PRECAST SKELETAL TOWER BUILDINGS

Arnold Van Acker Past chairman *fib* Commission on Prefabrication

Contents

- 1. Structural concept
- 2. Stability
- **3. Precast components**
- 4. Connections
- 5. Detailing
- 6. Erection

Office buildings in Brussels

Office buildings 20 to 37 storeys

High strength circular concrete columns

Slender prestressed floor beams

Prestressed hollow core floors

Ellipse building 26 storeys

Dexia Tower 37 storeys

Examples of recent realisations

First project in 2003

Initial design: steel frame + composite steel deck floors

After tender, variant solution in precast concrete :

- ⇒ 7% cheaper
- ⇒ double speed of erection
- ⇒ 2 hours fire resistance without additional protection
- ⇒ less deformation of the precast concrete floors

North Galaxy twin towers 36 storeys – 156.500 m² floors

1. Structural concept

Structural concept

- Construction principle
 - ⇒ Precast columns, beams, floors
 ⇒ Central core
 ⇒ Light façades

Columns in high strength self-compacting concrete 80/95 MPa

Hollow core floors

Floor lay-out

Large architectural freedom

Orthogonal lay-outs are ideal but other shapes are equally possible

Floor lay-out

Other examples of realisations

Column distance 7.20 m

Skeletal system

Ellipse building

Constant cross-section of circular columns over the total building height

2. Structural stability

Structural stability

The horizontal stability of medium and high rise precast buildings is realised through:

⇒Central cores⇒Floor diaphragms

Robustness

Design to prevent progressive collapse

Mechanisms to provide for alternate load path

Corner column taken away

Cantilever action of floor beams

Failure of corner column

Robustness

Design to prevent progressive collapse

Suspension via column to above structure

Cantilever action of floor beam

Cable action of floor beam

Failure of intermediate façade column

3. Precast components

Precast components

Columns

Projecting bars for column splicing

High strength concrete C 80/95

Precast columns

Composite, C 80/95 and C 45/60 in same project

High strength concrete C 80/95 at intermediate levels **Composite steel-concrete columns at lower levels**

Precast columns

Vertical casting single storey columns

Casting up side down

One storey columns

Precast columns

Horizontal casting two storey columns

Horizontal casting self-compacting concrete

Floor beams

Booth height 80 mm

Normal booth height \geq 150mm

Beam end with half[\]joint

Slender booth height

4. Detailing

• Joining of elliptic – rectangular building parts

Edge design elliptic floor

Edge beam with cantilevering top flange

Floor beams supported by edge beam

Holes for pinned connection

Floor arrangement ellipse building

• Projecting façade part

Peripheral tie reinforcement

Detail tie reinforcement calculated to prevent progressive collapse

Ellipse building 26 floors

Detailing Passage for technical conduits

HC on bottom fange steel beam

Installation technical conduits

5. Structural connections

Connections

Edge column - to - beam and hollow core floor

Connections

• HC Floor - to - composite beam

6. Erection

Columns

• Dexia tower (37 storeys)

Simultaneous erection and building finishing

• Installation glass façade.

Basement construction

• Up and down at the same time

Piles for basement wall (41.7 ton) Length 14.70 m

Longitudinal pipe for positioning control

28 precast foundation piles

Basement construction

Installation in excavated slot filled with bentonite

Temporary pile suspension during casting of footing

Footing reinforcement fixed to pile

Conclusion

Precast concrete is a modern industrialised and environmentally friendly method of construction, with a bright and promising future.

Thank you for your kind attention

