IPHA TECHNICAL SEMINAR 2017

October 25-26. Tallinn, Estonia

Non-rigid supports

Ronald Klein-Holte

Consolis VBI | The Netherlands

IPHA Design Course Hollow core slab and Floor design

Non-rigid supported hollow core floor

Ronald KLEIN-HOLTE

Need for flexible, adaptable space

- □ Reduce the number of columns
- □ Long spans >> hollow core floor
- □ With integrated steel, concrete or composite beams
- □ Minimize the structural depth >> possibilities for an additional storey
- □ Clear route for services

- □ Reduce the number of columns
- □ Long spans >> hollow core floor
- □ With integrated steel, concrete or composite beams
- □ Minimize the structural depth >> possibilities for an additional storey
- □ Clear route for services

Integrated beams – Shallow beams

Integrated beams – Shallow beams

Preliminary tests showed that the

resisting shear force was influenced

by the behaviour of the integrated beam.

CONSOLIS VBI

Mechanical behaviour

Bending in two directions

Mechanical behaviour

Bending in two directions

Due to loading the floor and the beam deflect.

Cracks at the interface of beam and in situ concrete or in situ concrete and end of the hollow core unit.

Longitudinal cracks along strands (A)

Shear deformation of the hollow core slab (B) or

sliding of hollow core slab along the beam (B)

=> non-intended composite action

B

Full scale tests

Tests in the 1990's and 2000's

Full scale tests

			Hollow	length of		Length of	
#	Test		core slab	slab	Beam	beam	V _{pu} [kN]
1	DE265	VTT	h=265	6000	Delta beam	5000	114.6
2	WQ265	VTT	h=265	6000	Steel beam	5000	166.1
3	PC265	VTT	h=265	6000	Prestressed concrete	5000	103.4
4	PC400	VTT	h=400	7200	Prestressed concrete	5000	252.1
5	WQ400	VTT	h=400	7200	WQ-beam	5000	293.6
6	PC265E	VTT	h=265	6000	Prestressed concrete with filled cores	5000	147.6
7	PC265T	VTT	h=265	6000	Prestressed concrete with topping	5000	140.3
8	PC265N	VTT	h=265	6000	Prestressed concrete	5000	163.8
9	PC265C	VTT	h=265	6000	Prestressed concrete continues beam	5000	191.4
10	MEK265	VTT	h=265	6000	MEK-beam	5000	148.2
11	RC265N	VTT	h=265	6000	Prestressed concrete	7200	106.7
12	LBL320	VTT	h=320	7200	LBL-beam	5000	161.9
13	DE400	VTT	h=400	8500	Delta beam	5000	222.0
14	SUP320	VTT	h=320	10000	Superbeam	4800	106.2
15	LB320	VTT	h=320	7200	LB-beam	5000	149.2
16	WQ500	VTT	h=500	10000	WQ-beam	7200	269.6
17	PC500	VTT	h=500	10000	Prestressed concrete	7200	336.4
18	DE500	VTT	h=500	10000	Delta beam	7200	366.9
19	PC400U	VTT	h=400	9000	Prestressed concrete	4800	282.4
20	A320	VTT	h=320	7900	A-beam	4800	183.3
21	IFB265	RWTH	h=265	5000	IFB-beam	6000	192.0
22	IFB265B	RWTH	h=265	5000	IFB-beam	6000	189.6
23	IFB250	RWTH	h=250	5000	IFB-beam	6000	194.4
24	IFB250B	RWTH	h=250	5000	IFB-beam	6000	194.4
25	IFB265M	RWTH	h=265	5000	IFB-beam	6000	218.4
26	IFB265RD	RWTH	h=265	5000	IFB-beam	6000	218.4
27	IFB250M	RWTH	h=250	5000	IFB-beam	6000	201.6
28	IFB250RD	RWTH	h=250	5000	IFB-beam	6000	201.6
29	PC270BI	TUKL	h=270	4300	Prestressed concrete	6000	196.0
30	IFB150	TUKL	h=150	4200	IFB-beam	3600	63.7
31	IFB150T	TUKL	h=150	4200	IFB-beam	3600	108.7

Integrated beams – Shallow beams

Full scale tests

Shear-tension failure

Publications

CONSOLIS VBI *fib* Bulletin 6 Codecard 18 CUR/BmS Aanbeveling 104

Shows the shear forces in a composite structure when the cracks in b) cannot transfer any stresses.

Roggendorf:

Bild 5.5: Schnittgrößen und Spannungskomponenten im Randsteg infolge der horizontalen Schubkraft *c* und Querbiegung

CONSOLIS VBI

The failure is controlled by the tensile principal stress of the concrete, which equals to the design strength value when the failure is assumed to follow.

The principal tensile stress is calculated according to the transformed plane stress condition:

$$\sigma_{I} = fct = \frac{\sigma}{2} + \sqrt{\left(\frac{\sigma}{2}\right)^{2} + \tau_{1}^{2} + \tau_{2}^{2}}$$

$$\sigma_{I} = fct = \frac{\sigma}{2} + \sqrt{\left(\frac{\sigma}{2}\right)^{2} + \tau_{1}^{2} + \tau_{2}^{2}}$$

Where τ_2 is shear stress due to the non-intended composite action in the direction of the beam.

Challenge: how to describe/derive τ_2 ?

Beam model

The horizontal shear flow due to the nonintended composite action:

$$\tau = V \cdot \frac{S}{b \cdot I} \qquad \qquad \nu_{yd} = V_{beam} \cdot \frac{ES_{topflanges}}{EI_{beam}}$$

Beam model

Distribution:

$$b_{cr}(y) = 2y \ge h$$

The shear stress in transverse direction due to the non-intended composite action:

$$\tau_2(y) = \frac{3 \cdot vyd \cdot bslab}{4 \cdot bcr(y) \cdot bw(y)}$$

Beam model

$\boldsymbol{b}_{\mathrm{cr}}$

 $b_{cr}(y) = 2y \ge h$

Beam model

The principal stress included the transverse shear stress:

$$\sigma_{I} = fct = \frac{\sigma}{2} + \sqrt{\left(\frac{\sigma}{2}\right)^{2} + \tau_{1}^{2} + \tau_{2}^{2}}$$

 τ_2 is a function of $ES_{topflangens}$; respectively a function of b_{eff} .

How to derive b_{eff} ?

Calibration of the design model to the tests

Coefficient k_{cd}

Depth of hc slab	Concrete beam	With concrete filled steel beam	Steel beam
150 mm	0.026	0.021	0.010
200 mm	0.026	0.021	0.010
260 mm	0.029	0.023	0.011
320 mm	0.031	0.022	0.013
400 mm	0.035	0.022	0.014
500 mm	0.040	0.028	0.020

The design width:

$$b_{eff} = L \cdot kcd$$

where *L* is the effective span length of the beam (distance between moment zero points)

CONSOLIS

VBI

Line of failure

Filled cores prevent the deformation of the hollow core cross section, in care of filled cores the shear stress τ_2 can be reduced with a factor β :

Slab thickness [mm]	200	265	320	400
Filling length < 50 mm	1.00	1.00	1.00	1.00
Filling length at least equal to the depth of void All voids filled	0.70	0.70	0.50	0.50

Values for β . For filling lengths shorter than depth of the core, linear interpolation may be applied.

τv

Debonding of strands

Check (ULS) the slab at midspan (highest curvature), when exceeding f_{ctd} a number of debonded strands should be taken into account.

Strands per web	1	2	3
Number of debonded strands per slab unit	1		
Number of debonded strands per web		0.5	0.5
Length of debonding (mm)	500	500	500

Table 4.8-3: Debonding of strands

Serviceability limit state

Check allowable strain and/or crack width:

$\varepsilon_{cr} \times 10^3$	<i>w_k</i> [mm]
0,4	0,1
0,7	0,2
1,0	0,3
1,3	0,4

$$\varepsilon_2 = \frac{M_{Edadd} \cdot z}{EI}$$

Example calculation

Slab length: 9.0 meter

Self weight: 3.6 kN/m2 Dead load: 1.2 kN/m2 Live load: 5.0 kN/m2

Example calculation

THQ 265.10-240.30-450.20

Span of the beam:	$L_{beam} = 5000$	mm
Depth of filled concrete in the cores:	FillingDepth = 50	mm

Example calculation

The composite beam:

 $k_{cd} := 0.011$

Effective width: $b_{eff} := L_{beam} \cdot k_{cd}$ $b_{eff} = 55$ mm

Influence of filled cores:

 $\beta_{f} := \beta_{filledcores}(FillingDepth) = 1.0$

Example calculation

The composite cross section for the calculation of the transverse shear stresses:

CONSOLIS

VBI

Example calculation

$$EA_{0.1} := \sum_{j=0}^{\text{hollowcore}} \left(\mathbf{E}_{j} \cdot \mathbf{A}_{j} \right) = 4999923191$$

hollowcore

$$\mathrm{ES}_{0.1} := \sum_{j=0} \left(\mathbf{E}_{j} \cdot \mathbf{A}_{j} \cdot \mathbf{Y}_{j} \right) = 599321638805$$

$$Y_{0.1} := \frac{ES_{0.1}}{EA_{0.1}} = 119.9 \text{ mm}$$

$$EI_{0.1} := \sum_{j=0}^{\text{hollowcore}} \left(\mathbf{E}_{j} \cdot \mathbf{I}_{j} \right) - \frac{ES_{0.1}^{2}}{EA_{0.1}} = 69854676938884$$

CONSOLIS VBI

Example calculation

Moment of area of the top flange:

$$ES_{f.1} := E_{topflange} \cdot A_{topflange} \cdot \left(Y_{topflange} - Y_{0.1} \right) = 31613906539$$

Example calculation

Loads on the beam:

design load beam due to added load:

$$q_{d.add.beam} := \left(\gamma_g \cdot p_{g3} + \gamma_q \cdot p_q\right) \cdot \left(SL + 2 \cdot \frac{SlabOffset}{1000}\right) = 83.1 \text{ kN/m}$$

The shear force in the beam inducing a transversal shear flow:

$$V_{Ed} = (q_{d.add.beam}) \cdot \frac{L_{beam}}{2} = 207631$$
 N

Example calculation

Horizontal shear flow v_{vd} in the composite beam:

 $\mathrm{v}_{yd} \coloneqq \mathrm{V}_{Ed} \cdot \frac{\mathrm{ES}_{f.1}}{\mathrm{EI}_{0.1}} \qquad \mathrm{v}_{yd} = 94.0 \qquad \text{N/mm}$

Example calculation

Shear stress in the hollow core webs in transverse direction:

$$\tau_{2}(y) := \frac{3 \cdot v_{yd} \cdot b_{sl}}{4 \cdot b_{cr}(y) \cdot b_{1}(y)} \qquad \qquad \tau_{2}(90) = 1.36 \text{ MPa}$$

Shear stress due to the vertical load:

$$V_{Ed.hc} = 70633$$
 N

$$\tau_{1}(y) := \frac{V_{Ed.hc} \cdot S_{c1}(y)}{b_{1}(y) \cdot I_{i1}} \qquad \qquad \tau_{1}(90) = 0.98 \text{ MPa}$$

Example calculation

Principal stress:

$$\sigma_1(\text{limit}, \mathbf{x}, \mathbf{y}) := -\frac{\sigma_{\text{cp}}(\text{limit}, \mathbf{x}, \mathbf{y})}{2} + \sqrt{\left(\frac{\sigma_{\text{cp}}(\text{limit}, \mathbf{x}, \mathbf{y})}{2}\right)^2 + \left(\tau_1(\mathbf{y}) + \tau_{\text{cp}}(\text{limit}, \mathbf{x}, \mathbf{y})\right)^2 + \left(\beta_f \tau_2(\mathbf{y})\right)^2}$$

Example calculation

Critical point found:

 $y := Position(\sigma_1, upper) = 90 mm$

$$x := X_{fail}(y) = 0.21$$
 m

$$\sigma_1(\text{upper}, x, y) = 1.37$$
 MPa

 $\sigma_1(\text{lower}, x, y) = 1.25$ MPa

$$\sigma_{1.\text{max}} = 1.37$$
 MPa

 $f_{ctd1} = 1.77$ MPa

Requirement
$$(\sigma_{1.max} \le f_{ctd1}) =$$
 "is fulfilled"

Example calculation

Non-rigid supported hollow core floor

Fire design

For shear resistance in fire:

Go down to the shear resistance in fire condition in cracked situation:

$$V_{Rd,c,fi} = \left[C_{\theta.1} + \alpha_k \cdot C_{\theta.2}\right] \cdot b_w \cdot d$$

CONSOLIS VBI

Non-rigid supported hollow core floor

Summary

- □ The shear tension resistance is influenced by the properties of the beam.
- □ It is about non-intended composite action.
- □ For design: use the same approach as for shear tension capacity on rigid support; but add a shear stress due to this possible composite action
- □ For cracked sections the known shear flexure capacity applies
- □ In case of fire: cracked section => same design formula as rigid support

VBI

Thank you for your attention

