FIRE DESIGN OF HOLLOW CORE SLABS

IPHA Seminar

Gothenburg, 6-7 November 2007

André de Chefdebien CERIB Construction Products Division Yahia Msaad CERIB Construction Products Division Fire section

calculation of the temperature field on supports and at mid-span

shear resistance model
 Interaction model
 Simplified shear-flexure model
 Validation and results

Temperature along the strand: midspan and support

Air circulation 20°C

Boundary conditions for thermal model derived from EC2-1-2

The convective heat transfer coefficient in the cavity is the same that for non exposed surface

The heat capacity of air is neglected

Thermal calculation

CERTED-temperature (°K) after 2h of Iso-834 fire curve

Strands temperatures

Temperature along the strand

Calculation method

for shear strength at high temperature

Calculation of a « upper bound » value of the shear strength : Integration of the shear strength along the assumed failure surface

•Assume a 45° failure surface Calculate the bond/anchorage capacity of reinforcement Calculate the longitudinal stress field equilibrating M_{Ed} and thermal strain (1st step with a reduced load, include shift rule) • Calculate V_{R.fi} by integration of the interaction curve •Adjustment of the load level: $V_{Edfi} = V_{R,fi}$ Iterations until convergence

Compatibility of shear strain : Kinematic factor

$$V_{R,\max} = \iint \frac{f_{cvd,i}}{k_{cvd,i}} ds_i$$

$$k_{cvd,i} = \frac{\gamma_i}{\gamma_{\min}} = \frac{\frac{f_{cvd,i}}{G_i}}{\gamma_{\min}}$$

$$V_{R,\max} = \iint \frac{f_{cvd,i}}{1.5} ds_i$$

Assumption: shear stress / shear strain relationship at high temperature proportional to axial stress / strain relationship

Bond and achorage of reinforcement

$$F_{R,a,fi} = F_{R,a,fi,p} + F_{R,a,fi,s}$$

$$= A_p \sigma_{ra,fi} + A_s f_{yk,fi}$$

$$= A_p \left(\frac{l'.f'_{bpd,fi}}{\alpha_2 \phi} + \frac{x.f_{bpd,fi}}{\alpha_2 \phi} \right) + A_s f_{yk}$$

$$\phi_{12} \text{ fully anchored and } K_s(\theta) = 1$$

$$f'_{bpd,fi} = \eta_{p2} \eta_1 \frac{0.7f_{ctm,C50} k_{c,t} \left(\frac{T_{C60} + T_{C25}}{2}\right)}{\gamma_{c,fi}} f_{bpd,fi} = \eta_{p2} \eta_1 \frac{0.7f_{ctm,C25} k_{c,t} (T_{C25})}{\gamma_{c,fi}} f_{ctm,C25} f_{ctm,$$

A proposal of simplified calculation method for shear strength

Shear flexure simplified model

$$V_{Rd,c,fi} = \left(\left(C_{Rd,c} \, k \, (100 \, \rho_{l,fi} \, \overline{f_{c,fi}} \right)^{1/3} + k_1 \, \sigma_{cp,fi} \right) b_w \, d$$

ratio of longitudinal reinforcements brought back to the minimal section

$$\rho_{l,fi} = \frac{\sum F_{R,a,fi}}{500} \frac{1}{b_w d}$$

b_w web minimal width

average concrete stress due to prestressing on the considered section

$$\sigma_{cp,fi} = \min(k_p(\theta)\sigma_{cp,20^\circ C}; \frac{F_{R,a,p,fi}}{A_c})$$

mean compressive concrete strength on the total section, i.e. temperature at mid heigth of the slab

Comparison between shear-flexure simplified model and interaction model

Comparison with available test results

Data base (shear failure tests): -Arnold Van Acker: 5 -Tauno Hietanen: 4

Characteristics of tests with shear failure

Test report.	Year	Origin	Slab height mm	Prestressing strands	Span x width m²	HA12	Self Weight kN/m²	Vtest/dalle kN	Test duration	Vr/dalle kN
Dk- Betonelem ent				2T12.5	2,94 x					
foreningen	2005	Denmark	265	a=40	2,4	yes	3,65	89.48	45'	90.55
FEBE-RUG 9158-a	1998	Belgium	265 +30	2T12.5 a=50	2,9 x 2,4	yes	4,55	85.54	120'	83.1
Belgium 1971	1971	Belgium	265	T12.5 a=31	2,9 x 1,2	no	3,86	54.72	33'	52.16
Denmark 1998	1998	Denmark	185	T9.3 a=31	6,2 x 2,4	no	2,62	43.5	22'	47.8
VTT/PAL 4350	1984	Finland	265	T9.3 a=60	5,08 x 2,4	no	3,86	25.11	130'	27.43
VTT/PAL 2480/82	1982	Finland	265	T12.5 a=65	3,9 x 2,4	no	3,6	44.28	63'	43.68
VTT/PAL 4248/84	1984	Finland	265	T12.5 a=64	5,185 x 2,4	no	3,6	48.65	49'	48.54
VTT/PAL 566d/85	1985	Finland	265	T12.5 a=57	5,165 x 2,4	yes	3,6	55.56	77'	54.86
VTT/PAL 90228/89	1989	Finland	265	T9.3 a=62 T12.5 a=92	5,165 x 2,4	yes	3,6	77.44	27'	79.32

Influence of longitudinal bars and protruding strands

Configuration	Vr (kN/cell) intrinsic curve	Vr(kN/cell) Simplified method
No φ12	11.2	12.1
L=0		
φ12	16.7	15.1
L=0		
φ12	19.8	17.8
EREL=0.1		

Concluding remarks on the shear resistance models

Both formulas seems to give a correct answer compared to test results of HC slabs

The "interaction method" allows to take into account the inter-action between the slabs ant supports (compression for floors with low slenderness ratio – tension for floors with cable effect), this approach could be developed for a global study (fire development, behaviour of the structure)

It is obvious that "shear flexure" simplified method is too conservative for short time fire exposure, and probably for thick HC

Tentative review of of tabulated data

Standard fire resistance	Shear capacity $V_{ m Rd,ff}/V_{ m Rd,cold}$ (%) Slab thickness (mm)				
	160	200	265	320	400
R30					
	73		70	71	76
R60	66	68	56 / <mark>62</mark>	55 / <mark>63</mark>	52 / <mark>70</mark>
R90	60*	63	53	50	48 / <mark>68</mark>
R120	55*	*	FO	47	40
	ວວ	ጥ	50	47	40
R180	44*	*	*		42

In blue : « shear-flexure » in red : « interaction »

* Does not satisfy the insulation criterion

Shear by prestressing

Shear by thermal strain

Dk-Betonelement (Denmark)

$$\Rightarrow V_{Ed,fi} = 73.3 kN/m \Rightarrow V_{Ed,fi/cell} = 16.56 kN/cell$$

Effort anchored by reinforcement

$$F_{R,a,fi} = F_{R,a,fi,p} + F_{R,a,fi,s} = A_p \sigma_{ra,fi} + A_s f_{yk,fi}$$
$$= A_p \left(\frac{l' \cdot f'_{bpd,fi}}{\alpha_2 \phi} + \frac{x \cdot f_{bpd,fi}}{\alpha_2 \phi} \right) + A_s f_{yk,fi}$$

$$\begin{aligned} f_{ck} &= 60 \ MPa \implies f_{ctm} = 4.4 \ MPa \\ l' &= 0; a = 40 \ mm \\ x &= 70 \ mm + a = 110 \ mm \\ T_s &= 250 \ ^{\circ}C \implies k_{ct} \ (T_s) = 0.7 \end{aligned} \qquad \begin{aligned} f_{bpd,fi} &= \eta_{p2} \ \eta_1 \frac{0.7 f_{ctm} \ k_{c,t} \ (T_s)}{\gamma_{c,fi}} \\ &= 1.2 \frac{0.7 \times 4.4 \times 0.7}{1} = 2.59 \ MPa \\ f_{yk,fi}(\phi 12) &= \frac{f_{yk} \times k_s \ (T_{\phi 12})}{\gamma_{s,fi}} = f_{yk} = 500 \ MPa \end{aligned}$$

$$\begin{cases} 2 \times T \, 12 \, .5; \, \alpha_2 = 0.19; A_p = 186 \, mm^2 \\ A_s = 90.4 \, mm^2 \end{cases} \Rightarrow F_{ra, fi} = 67.5 \, kN$$
²²

Dk-Betonelement (Denmark)

ratio of longitudinal reinforcements brought back to the minimal section

$$\begin{cases} b_{\omega} = 41 \, mm \\ d = h - 40 = 225 \, mm \end{cases} \Rightarrow \rho_{l,fi} = \frac{F_{ra,fi}}{b_{\omega}d} = 1.46 \,\%$$

average concrete stress at x+d (shift rule):
$$\sigma_{cp,fi} = \frac{F_{R,a,fi,p}(x+d)}{A_c} = 2.2MPa$$

Mean compressive
concrete strength
$$\overline{f_{c,fi}} = \frac{f_{ck}k_c(\overline{\theta})}{\gamma_{c,fi}} = 60 \times 0.98 = 58.8MPa$$

$$V_{Rd,c,fi} = \left(\left(C_{Rd,c} \, k \, (100 \, \rho_{l,fi} \, \overline{f_{c,fi}} \right)^{1/3} + k_1 \, \sigma_{cp,fi} \right) b_w \, d = 16.77kN$$

$$C_{Rd,c} = 0.18 \, k = 1 + \sqrt{\frac{200}{d}} = 1.94 \, k_1 = 0.15$$