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» calculation of the temperature field on
supports and at mid-span

> shear resistance model
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o Validation and results
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Temperature along the strand: midspan and support

Air circulation 20°C
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Boundary conditions for thermal model
derived from EC2-1-2

exposed side . .
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The convective heat
transfer coefficient in
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exposed surface

Radiation

Castem method:
closed convex cavity

AN The heat capacity of air
calculates automaticly >
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Calculation method

for shear strength at high temperature




Interaction model

Calculation of a « upper bound » value of the shear strength :
Integration of the shear strength along the assumed failure surface

VA

Shear strength —
normal stress
interaction curve
given by EC2-1-1
812
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Interaction model

eAssume a 45° failure surface
eCalculate the bond/anchorage
capacity of reinforcement
eCalculate the longitudinal
stress field equilibrating M

and thermal strain (1st step

with a reduced load, include
shift rule)

=Calculate Vg ; by integration
of the interaction curve

eAdjustment of the load level:

VEd =p (I/2 - 1a/2 - a - d) V.. =V
MEd = p (/2 + a + d)(I/2 - la/4 - a/2- d/2) Edfi — VR,fi

elterations until convergence
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Interaction model

Compatibility of shear strain : Kinematic factor

Assumption: shear stress / shear strain relationship at high
temperature proportional to axial stress / strain relationship
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Interaction model

Bond and achorage of reinforcement

Temperature

¢,, fully anchored
and K, (0)=1

TC 60 T TC 25

Ve, fi

Ochtm,CSO kc,t(
f'bpd,fi =12 Th

Ve fi fbpd,fi =Moo




A proposal of simplified
calculation method

for shear strength




Shear flexure simplified model

—\U/3
(CRd,c k(loOpl,fi fc,fi +K, O cp, fi

ratio of longitudinal reinforcements brought back to the minimal section

web minimal width

average concrete stress due to prestressing on the considered section

I . |:R,a,p,fi
ch, fi — mm(kp (Q)ch,zooc ’ —)

A

mean compressive concrete strength on the total section,
I.e. temperature at mid heigth of the slab
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Comparison between shear-flexure simplified model and
Interaction model

25
Vr-simplified(kN/cell)

. . . 15
Vr-intrinsic
curve(kN/cell)




Comparison with available test results

comparison between shear load and shear

shear strength(kN/cell) strength given by simplified method
25

. LINE OF SHEAR FAILURE
NO SHEAR FAILURE _
) ’ __—"Vedi= Vraf

20 —

15 -
Ao shear failure observed

e o failure observed
y=X

10 -

shear load applied (kN/cell)
Data base (shear failure tests):
-Arnold VVan Acker: 5

-Tauno Hietanen: 4



Characteristics of tests with shear failure

Test report. Year [ Origin Slab Prestressing Span HA12 Self Vtest/dalle Test Vrl/dalle
height strands x width Weight kN duration kN
mm m2 kN/m2
Dk-
Betonelem
ent 2T12.5 2,94 x
foreningen 2005 | Denmark | 265 a=40 24 yes 3,65 89.48 45' 90.55
FEBE-RUG 265 2T12.5
9158-a 1998 | Belgium +30 a=50 | 29x24 yes 4,55 85.54 120' 83.1
Belgium
1971 1971 Belgium 265 T125a=31 | 29x1,2 no 3,86 54.72 33 52.16
Denmark
1998 1998 | Denmark 185 T9.3a=31 | 6,2x24 no 2,62 435 22' 47.8
VTT/PAL 5,08 x
4350 1984 | Finland 265 T9.3 a=60 24 no 3,86 25.11 130 27.43
VTT/PAL
2480/82 1982 Finland 265 T125a=65 | 39x24 no 3,6 44.28 63' 43.68
VTT/PAL 5,185 x
4248/84 1984 Finland 265 T12.5 a=64 2,4 no 3,6 48.65 49' 48.54
VTT/PAL 5,165 x
566d/85 1985 Finland 265 T12.5 a=57 2,4 yes 3,6 55.56 s 54.86
VTT/PAL T9.3 a=62 5,165 x
90228/89 1989 Finland 265 T12.5 a=92 2,4 yes 3,6 77.44 27 79.32



Influence of longitudinal bars and protruding strands

Zué12fslab

C60

IHT9.3/cell

R120
Configuration Vr (kN/cell) Vr(kN/cell)
INtrinsic | Simplified method
curve
No ¢1.2 11.2 12.1
=0
G122 16.7 15.1
=0
12 19.8 17.8

HC : 270 mm
Span : 12.5 m
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Concluding remarks on the shear resistance
models

Both formulas seems to give a correct answer
compared to test results of HC slabs

The “interaction method” allows to take into account
the inter-action between the slabs ant supports
(compression for floors with low slenderness ratio —
tension for floors with cable effect), this approach could
be developed for a global study (fire development,
behaviour of the structure)

It is obvious that “shear flexure” simplified method is

too conservative for short time fire exposure, and
probably for thick HC

CERIB
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Tentative review of of tabulated data

Standard fire Shear capacity

resistance I

Rd fi' ¥ Rd,cold

(%)
Slab thickness (mm)

_
R120
R I P
R180
N

In blue : « shear-flexure » in red : « interaction »

* Does not satisfy the insulation criterion
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Shear by thermal strain

Shear by prestressing
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Dk-Betonelement (Denmark)

=16.56kN/cell

/cell

=>Veq i = 133KN/ M=V, 4

2.9m

Effort anchored by reinforcement

Frati = Frasipt Fradis = Ap0 g+ A fyk,fi
' f' - x. f .
_ Ap[ bpd , fi n bpd,fl]_*_ Asfyk’fi
a,P a,p

0’7 fctm kC,t (rS)

Ve, i

f, =60MPa = f_ =4.4MPa
|'=0:a = 40 mm

fbpd,fi =Moo Th

19 0.7 ><4.14><O.7 _ 2 59MPa

fyk,fi (¢12) = fyk X ks (T¢1% ] = fyk = 500M Pa

2xT12.5,a, =0.19; A ) =186 mm ?
A, =90.4mm 2

X=70mm +a =110 mm
T, =250°C = k,(T,)=0.7

}:> F.. i =67.5kN B



Dk-Betonelement (Denmark)
ratio of longitudinal reinforcements brought back to the minimal section

b, =41mm LV
= P = =1.46 %
d =h-40 = 225 mm | b d

9

F. . (x+d)

average concrete stress at x+d (shift rule): Cop i = R’alfilzc =2 2MPa

_ Tuke(9) _ 50, 0.98-58.8MPa

Ve fi

Mean compressive
concrete strength

Vg o 5 =(Caa . k100, 4 T, 4|~ +k &, 4 |, d =16.77kN

p, fi




