

Contents

Experiences from first fire tests

1972-1980

14.85 kN

Test Ergon on simply supported single unit in 1972: shear failure after 30 min. Test Echo on floor with connections in 1980: deflexure 1/30e span after 126 min.

Fire tests on HC units world wide

Fire resistance

Deflection

Flexural capacity

Simple calculation method

Calculation model at ULS

Temperature profiles

⇒ Special test furnace at Ergon in Belgium

Calculation flexural capacity

Temperature profiles EN 1168

Flexural capacity

Simply supported HC 265 mm

Self weight inclusive joints: 3.86 kN/m² Prestressing: 2 ø $\frac{3}{8}$ ' + 8 ø $\frac{1}{2}$ ' strands, axis distance 50 mm $f_{ck} = 45 \text{ kN/mm}^2$ $f_{cd,fi} = 45/1.20 = 37,5 \text{ kN/mm}^2$ (EN1992-1-2 gives $\gamma_m = 1.00$)

Axis distance 50 mm	R60	R90	R120	R180
$ \begin{array}{c} \theta_i \\ f_{py} / 0.9 \ f_{pk} \\ f_{py} \end{array} $	230	320	385	490
	0.82	0.66	0.53	0.32
	1525	1228	986	595

Temperature and corresponding steel strength for different fire durations

Calculation flexural capacity

$$x.b_{e}f_{cd,fi} = A_{s}f_{sd,f}$$
$$z = h_{fi} - \frac{x}{2}$$

After 60 minutes fire exposure

 $N_{a} = (2x51.6 + 8x93)x1525 = 1292kN$ $x = \frac{1292827}{1200x37,5} = 28,7mm$ $M_{Rd,fi} = 1292x(265 - 50 - \frac{28,7}{2}) = 259kNm$ After 90 minutes fire exposure $N_{a} = (2x51.6 + 8x93)x1228 = 1040kN$ $x = \frac{1040362}{1200x37,5} = 23,12mm$ $M_{Rd,fi} = 1040x(265 - 50 - \frac{23,12}{2}) = 211,6kNm$

Induced thermal stresses

Non-linear shape of temperature profiles

Shear capacity HC floors under fire

Research done in Belgium

Induced stresses due to the incompatibility between non-linear temperature profile and linear deformation of the cross-section

Induced thermal stresses

Cracking of the webs due to induced thermal stresses during fire test on sample cut from hollow core slab

Design recommendations

Shear transfer through aggregate interlock

Cracked concrete sections can take up shear through aggregate interlock on condition that the cracks are not opening

Tests in Belgium

Shear resistance of hollow core floors

4 tests with extruded and slip-form slabs

Preparation test floor

Longitudinal bars to simulate the blocking of the expansion by the surrounding structure

Test results

Test N°	Floor thickness mm	Test load kN	ISO fire exposure minutes	Failure load at end of test kN	V _{Rd} at normal temperature kN	Shear loading/ V _{Rd}
T1 A B	200 200 + 50	100 100	83 83	178 (B) 254 (B)	79/slab	86.8 %
T2 A B	200 200	100 100	120 120	292 (B) 324 (B)		
T3 A B	200 200	100 100	120 120	254 (B) 267 (B)		
T4 A B	265 265 + 30	100 100	120 120	305 (B) 305 (Sh)	148/slab	56.2 %

Research in Denmark

Shear capacity hollow core floors

- 60 min ISO fire + 90 min. cooling (load applied)
- Uniforme belasting:

 $1^{th} test 65 \% V_{Rd} : no failure$ $2^{nd} 75 \% V_{Rd} : no failure$ $3^{nd} 80 \% V_{Rd} : shear failure$ after 45'

Info: www.bef.dk/sw343.asp

Restrained supports

Induced support moment

Flexural capacity

Test on restrained support

Heavy spalling at soffit near support after 23 min. fire exposure

Causes of spalling

- Cumulation of compressive stresses from
 - Prestressing
 - Hindered longitudinal expansion
 - Force couple to take up the support moment due to heavy loading
 - Induced thermal stresses

Design recommendations

Calculation of stresses

- Stresses at the underflange due to support moment $M_{neg,fi}$
- Prestressing force σ_{cp}
- Compression stresses due to temperature gradient $\sigma_{c,grad}$
- Compression stresses due to possible blocking of the thermal expansion by the surrounding structure $\sigma_{dil,fi}$

$$\begin{split} \sigma_{Ed,fi} &= \sigma_{c,Mneg,fi} + \sigma_{cp} + \sigma_{c,grad} + \sigma_{dil,fi} \\ \sigma_{Ed,fi} &\leq f_{cd,fi} \\ \text{and} \quad \epsilon < \epsilon_{c1,\theta} \cong 0,025 \end{split}$$

Design recommendations

Calculation example for 90 min. exposure

 $\sigma_{cp} = x \text{ N/mm}^2$ (x symbolizes the stress in the concrete of the underflange at ambient temperature) strand temperature at 90 minutes fire for 50 mm axis distance: 320 °C

$$f_{p,y} / 0.9 f_{pk} = 0.66$$
 (Table figure 2)
 $\sigma_{cp,fi} = 0.66 x$

Assumption: $\sigma_{\text{prest},\theta+}\sigma_{\text{dil},\theta} \cong_{\sigma \text{prest}}$ at ambient temperature

$$\sigma_{d, \theta} = \sigma_{c,Mneg} + \sigma_{prest, \theta} + \sigma_{c,grad}$$
$$= \frac{f_{sy+} \cdot A_s}{1200 \cdot a} + 8 \text{ N/mm}^2$$

 $\sigma_{d, \theta} \leq_{f cd, \theta}$ (average strength in the underflange after θ minutes fire exposure)

Support connections

Function: keep thermal cracks closed

Support connections

Alternative solutions

Connections with steel profiles

Keeping thermal cracks closed

Avoid additional tensile stresses in the webs

