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Introduction 

 As long as pre-stressed hollow core slabs exists as long as 

there are questions about their shear resistance 

 

The shear tension capacity of a slab element is well known now. 

 

But what about… 

 

 Shear flexure capacity? 

 Influence of structural topping? 

 Influence of filled cores? 

 Interaction shear and bending? 
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Introduction 

 Shear failure modes in cracked and uncracked regions 
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anchorage 
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EC2 Design 

 Shear flexural resistance: 
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EC2 Design 

 Shear tension resistance: 
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In regions uncracked in bending (where the flexural tensile stress is smaller 

than fctk,0,05/ c) the shear resistance should be limited by the tensile strength 

of the concrete. 

For cross-sections where the width varies over the height, the maximum 

principal stress may occur on an axis other than the centroidal axis. In such 

a case the minimum value of the shear resistance should be found by 

calculating VRd,c at various axes in the cross-section. 
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EC2 Design 

 Shear tension resistance 

extended formula in EN 1168 
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 Shear tension resistance 

extended formula in EN 1168 

 

EC2 Design 
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EC2 Design 

 Anchorage 
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For members with shear reinforcement the additional tensile force, Ftd, 

should be calculated according to 6.2.3 (7). For members without shear 

reinforcement  Ftd may be estimated by shifting the moment curve a 

distance al = d according to 6.2.2 (5). This "shift rule“ may also be used as 

an alternative for members with shear reinforcement. 
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EC2 Design 

 Anchorage 
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Anchorage of tensile force for the ultimate limit state 

The anchorage of tendons should be checked in sections where the 

concrete tensile stress exceeds fctk,0,05. The tendon force should be 

calculated for a cracked section, including the effect of shear according to 

6.2.3 (6); see also 9.2.1.3. 

Where the concrete tensile stress is less than fctk,0,05, no anchorage check 

is necessary. 
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Full scale test 

 EN 1168 Annex J  Test Setup 
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General test setup for testing shear and anchorage strength 
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Full scale test 

  EN 1168 Annex J – Loading sequence 
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Full scale test 

 Calculating the expected failure load 

 

 Mean material strength 

 Design principles based on this mean material strength 

 

e.g.:  

The bond strength based on mean tensile strength (anchorage) 

Transfer of pre-stress based on mean transmission length      
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Full scale test 

 Interaction graph 
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Shear tension resistance 
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VX265 10 Ø12,5 

 

Fexp  =  267 kN 

 

Fcalc =  290 kN 
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Shear flexure resistance 
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CRd,c = 0,18 

no material factor 

Equivalent tensile reinforcement:

Asl x( )
Fanchorage x( )

500


Reinforcement ratio:

1 x( ) min
Asl x( )

bw x( ) d
0.020













fck = fcm 

Effective depth of total 

cross section 

(structural topping included) 
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Shear flexure resistance 
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A260 12 Ø12,5 

no topping 

 

Fexp  =  284 kN 

 

Fcalc =  300 kN 
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Shear flexure resistance 
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A260 12 Ø12,5 

50 mm topping 

 

Fexp  =  353 kN 

 

Fcalc =  351 kN 
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Shear flexure resistance 
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A260 12 Ø12,5 

100 mm topping 

 

Fexp  =  430 kN 

 

Fcalc =  411 kN 
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Shear tension resistance 

 General formula according to EC2 
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lpt 

fctm 
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Shear tension resistance 

 Transmission length 
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c=1.5 
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 Transmission length 

 

Shear tension resistance 
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 Cross sectional properties 

Shear tension resistance 
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Composed section proporties:

Ecm fck( ) 22000
fck 8

10









0.3

 ntop

Ecm fck.topping 
Ecm fck 

0.868 nfc

0.7 Ecm fck.core 
Ecm fck 

0.607

Section properties depending on distance x:

Aci x( ) Ac ntop Atopping ncores x( ) Acore

Yci x( )
Ac Yc ntop Atopping Ytopping ncores x( ) Acore Ycore

Aci x( )


Ici x( ) Ic Ac Yc Yci x( ) 2 ntop Itopping ntop Atopping Ytopping Yci x( ) 2 ncores x( ) Icore ncores x( ) Acore Ycore Yci x( ) 2

Sci x( ) Sc

YSc Yci x( ) Yc 

YSc

ncores x( ) ASc.core YSc.core Yci x( ) Yc 






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Shear tension resistance 
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Shear tension capacity:  (simplified formula added with core filling)

 1.0  1.0

VRct x( ) Lx max 0.5 a1 Yc distance x( ) 

c

Fp Lx( )

Ac



Ici x( )

Sci x( )
 bw.slab fctm

2
 c fctm bw.core x( ) fctm.core










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Shear tension resistance 
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A260 12 Ø12,5 

no topping 

 

Fexp  =  243 kN 

 

Fcalc =  274 kN 
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Shear tension resistance 
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A260 12 Ø12,5 

50 mm topping 

 

Fexp  =  299 kN 

 

Fcalc =  336 kN 
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Shear tension resistance 

27 

A260 12 Ø12,5 

100 mm topping 

 

Fexp  =  384 kN 

 

Fcalc =  414 kN 
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Filled cores 
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VX265 10 Ø12,5 

no topping 

 

Fexp  =  398 kN 

 

Fcalc =  407 kN 
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Filled cores 
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5-265 10 Ø12,5 

no topping 

 

Fexp  =  330 kN 

 

Fcalc =  405 kN 
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Filled cores 
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260 5 Ø12,5 

no topping 

 

Fexp  =  340 kN 

 

Fcalc =  350 kN 
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Conclusions 

 Structural topping increases the shear resistance as well for 

shear tension as for shear flexural capacity 

 

 The design model according to EC2 predict the same failure 

mode as in the tests. 

 

 Magnitude of the capacity of the tests corresponds with EC2 

calculation model. 

 

 The bond of the core filling is a critical parameter. 

 

 Filled cores  increases the shear capacity but also the failure can 

shift to another mode. (to anchorage failure) 
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