IPHA Technical Seminar 2015

October 21-22, Malmö - Sweden

Shear resistance of hollowcore slabs

Ronald Klein-Holte

VBI Ontwikkeling bv

Contents

- Introduction
- Overview shear design according EC2
- Full scale testing
- Shear flexure resistance
- Shear tension resistance
- Conclusion

Introduction

 As long as pre-stressed hollow core slabs exists as long as there are questions about their shear resistance

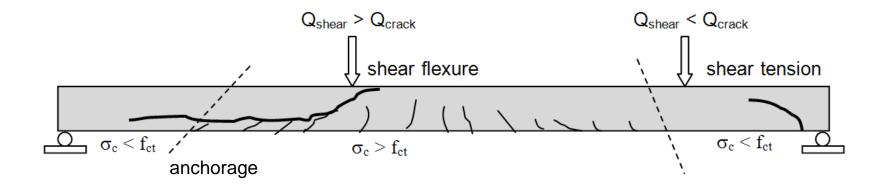
The shear tension capacity of a slab element is well known now.

But what about...

- Shear flexure capacity?
- Influence of structural topping?
- Influence of filled cores?
- Interaction shear and bending?

Introduction

Shear failure modes in cracked and uncracked regions



Shear flexural resistance:

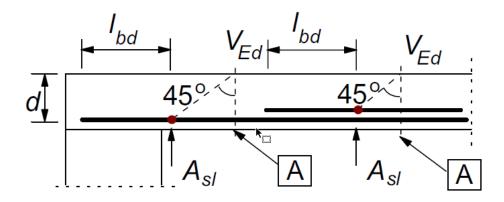
$$V_{\text{Rd,c}} = [C_{\text{Rd,c}}k(100 \rho_1 f_{\text{ck}})^{1/3} + k_1 \sigma_{\text{cp}}] b_w d$$

with a minimum of

Seminar 2015, October 21-22, Malmö - Sweden

5

$$V_{\rm Rd,c} = (v_{\rm min} + k_1 \sigma_{\rm cp}) b_{\rm w} d$$



Shear tension resistance:

$$V_{\rm Rd,c} = \frac{I \cdot b_{\rm w}}{S} \quad \sqrt{\left(f_{\rm ctd}\right)^2 + \alpha_I \sigma_{\rm cp} f_{\rm ctd}}$$

In regions uncracked in bending (where the flexural tensile stress is smaller than $f_{\text{ctk},0,05}/\gamma_{\text{c}}$) the shear resistance should be limited by the tensile strength of the concrete.

For cross-sections where the width varies over the height, the maximum principal stress may occur on an axis other than the centroidal axis. In such a case the minimum value of the shear resistance should be found by calculating $V_{Rd,c}$ at various axes in the cross-section.

 Shear tension resistance extended formula in EN 1168

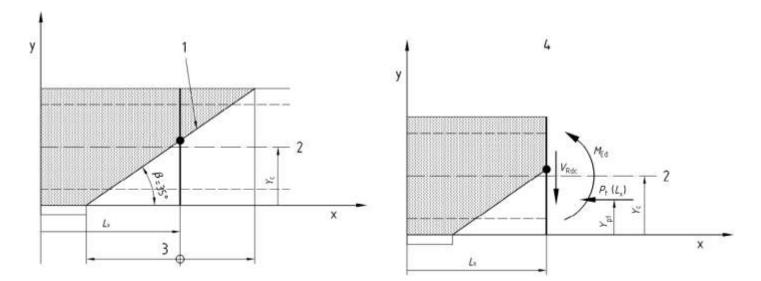
$$V_{\text{Rdc}} = \frac{Ib_{\text{w}}(y)}{S_{\text{c}}(y)} \left(\sqrt{(f_{\text{ctd}})^2 + \sigma_{\text{cp}}(y)} f_{\text{ctd}} - \tau_{\text{cp}}(y) \right)$$

where

$$\sigma_{\rm cp}(y) = \sum_{t=1}^{n} \left\{ \left[\frac{1}{A} + \frac{(Y_{\rm c} - y)(Y_{\rm c} - Yp_{\rm t})}{I} \right] \times P_{\rm t}(l_{\rm x}) \right\} - \frac{M_{\rm Ed}}{I} \times (Y_{\rm c} - y) \qquad \text{(positive if compressive)}$$
$$\tau_{\rm cp}(y) = \frac{1}{b_{\rm w}}(y) \times \sum_{t=1}^{n} \left\{ \left[\frac{A_{\rm c}(y)}{A} - \frac{S_{\rm c}(y) \times (Y_{\rm c} - Yp_{\rm t})}{I} + Cp_{\rm t}(y) \right] \times \frac{dP_{\rm t}(l_{\rm x})}{dx} \right\}$$

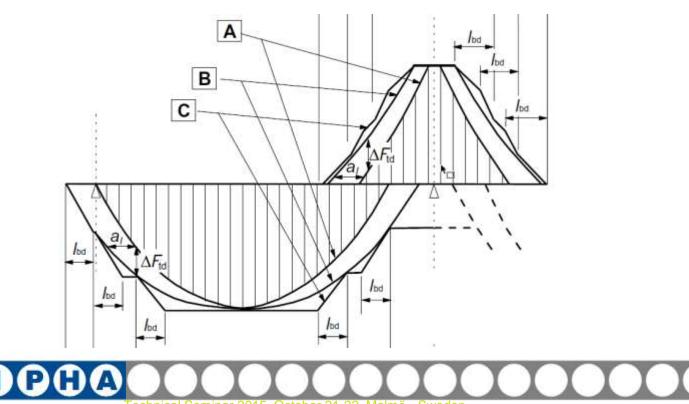
Shear tension resistance extended formula in EN 1168

This equation shall be applied with reference to the critical points of a straight line of failure rising from the edge of the support with an angle β = 35° with respect to the horizontal axis. The critical point is the point on the quoted line where the result of the expression of $V_{\text{Rd,c}}$ is the lowest.



Anchorage

For members with shear reinforcement the additional tensile force, ΔF_{td} , should be calculated according to 6.2.3 (7). For members without shear reinforcement ΔF_{td} may be estimated by shifting the moment curve a distance $a_{l} = d$ according to 6.2.2 (5). This "shift rule" may also be used as an alternative for members with shear reinforcement.



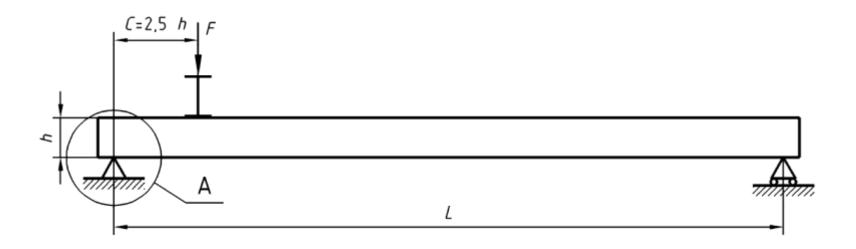
Anchorage

Anchorage of tensile force for the ultimate limit state

The anchorage of tendons should be checked in sections where the concrete tensile stress exceeds $f_{ctk,0,05}$. The tendon force should be calculated for a cracked section, including the effect of shear according to 6.2.3 (6); see also 9.2.1.3.

Where the concrete tensile stress is less than $f_{\text{ctk},0,05}$, no anchorage check is necessary.

EN 1168 Annex J Test Setup



General test setup for testing shear and anchorage strength

EN 1168 Annex J – Loading sequence

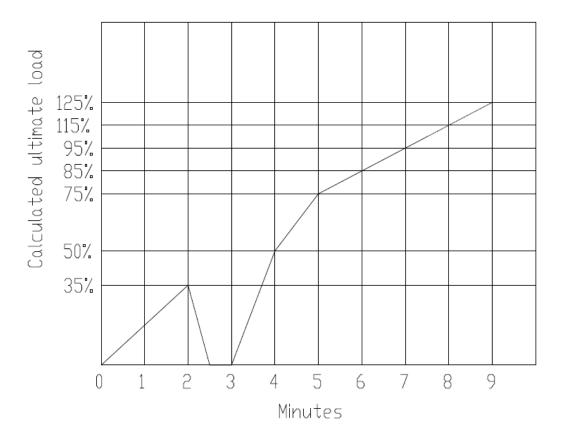


 Image: Comparison of the comparison of the

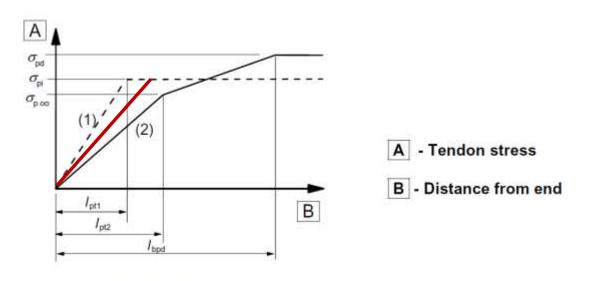
Calculating the expected failure load

- Mean material strength
- Design principles based on this mean material strength

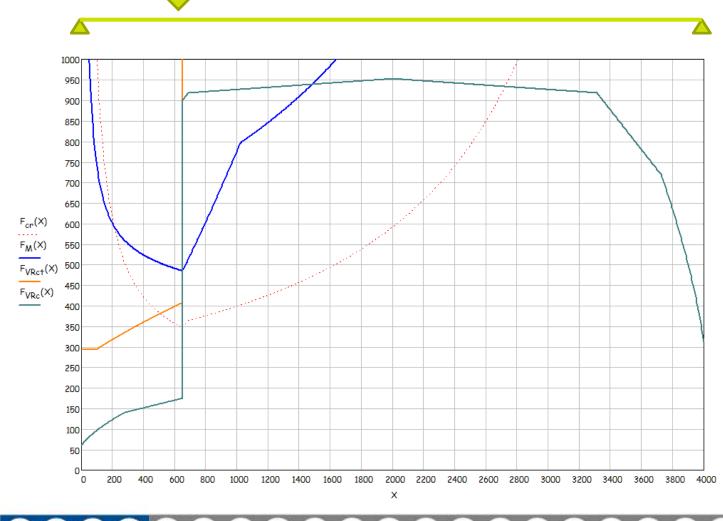
e.g.:

The bond strength based on mean tensile strength (anchorage) Transfer of pre-stress based on mean transmission length

October 21



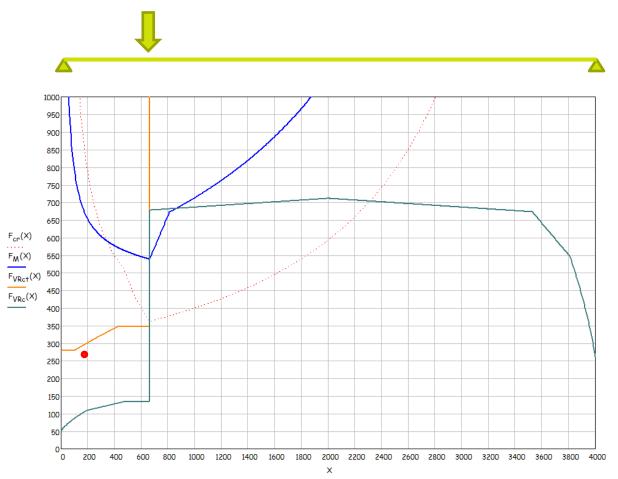
Interaction graph



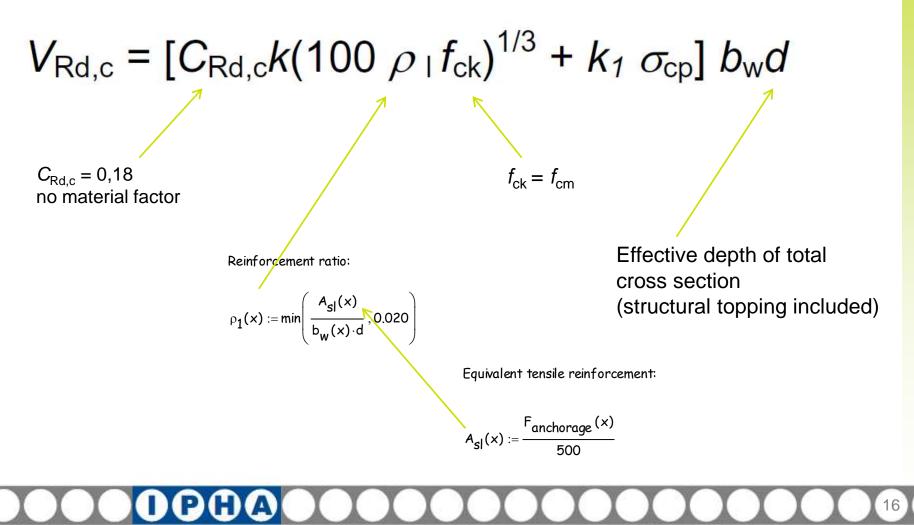
Fechnical Seminar 2015, October 21-22, Malmö - Sweden

14

VX265 10 Ø12,5	
F_{exp}	= 267 kN
F_{calc}	= 290 kN



Technical Seminar 2015, October 21-22, Malmö - Sweden

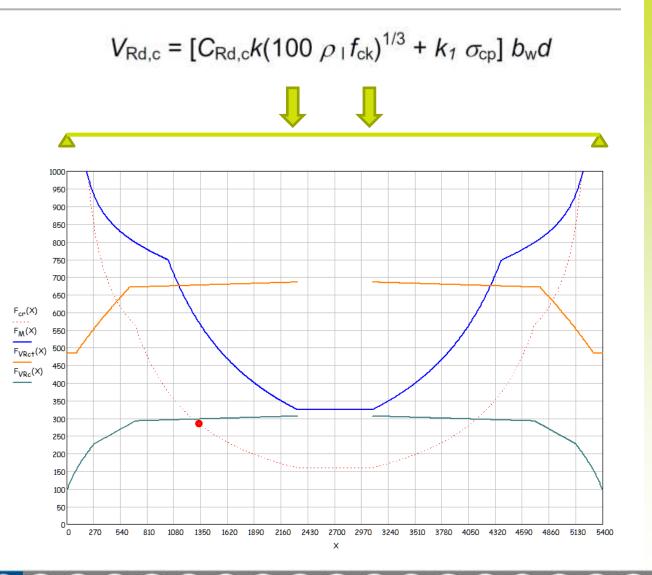


Technical Seminar 2015, October 21-22, Malmö - Sweder

0000000

A260 12 Ø12,5 no topping

$$F_{exp} = 284 \text{ kN}$$
$$F_{calc} = 300 \text{ kN}$$



17

echnical Seminar 2015, October 21-22, Malmö - Sweden

A260 12 Ø12,5 50 mm topping

$$F_{exp} = 353 \text{ kN}$$
$$F_{calc} = 351 \text{ kN}$$

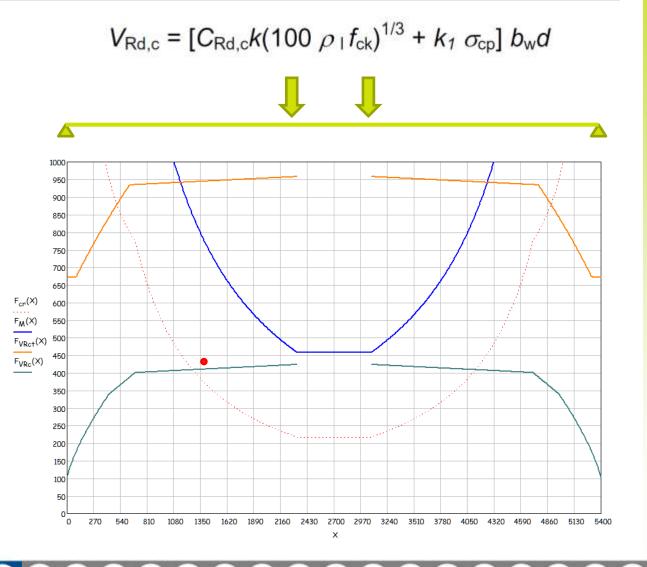
$$V_{Rd,c} = [C_{Rd,c}k(100 \rho_1 f_{ck})^{1/3} + k_1 \sigma_{cp}] b_w d$$

18

Technical Seminar 2015, October 21-22, Malmö - Sweden

0000000

A260 12 Ø12,5 100 mm topping $F_{exp} = 430 \text{ kN}$ $F_{calc} = 411 \text{ kN}$



echnical Seminar 2015. October 21-22. Malmö - Sweden

19

General formula according to EC2

$$V_{\rm Rd,c} = \frac{I \cdot b_{\rm w}}{S} \quad \sqrt{(f_{\rm ctd})^2 + \alpha_I \sigma_{\rm cp} f_{\rm ctd}} \qquad f_{\rm ctm}$$

where

- I is the second moment of area
- b_w is the width of the cross-section at the centroidal axis, allowing for the presence of ducts in accordance with Expressions (6.16) and (6.17)
- S is the first moment of area above and about the centroidal axis
- $\alpha_l = I_x/I_{pt2} \le 1,0$ for pretensioned tendons
 - = 1,0 for other types of prestressing
- I_x is the distance of section considered from the starting point of the transmission length
- Ipt2 is the upper bound value of the transmission length of the prestressing element according to Expression (8.18).

October 21-22 Malmö -

 σ_{cp} is the concrete compressive stress at the centroidal axis due to axial loading and/or prestressing ($\sigma_{cp} = N_{Ed}/A_c$ in MPa, $N_{Ed} > 0$ in compression)

Transmission length

8.10.2.2 Transfer of prestress

(1) At release of tendons, the prestress may be assumed to be transferred to the concrete by a constant bond stress f_{bpt} , where:

$$f_{\rm bpt} = \eta_{\rm p1} \, \eta_1 \, f_{\rm ctd}(t)$$
 (8.15)

where:

γ_c=1.5

- $\eta_{\rm p1}$ is a coefficient that takes into account the type of tendon and the bond situation at release
 - $\eta_{p1} = 2,7$ for indented wires
 - $\eta_{\rm P1}$ = 3,2 for 3 and 7-wire strands
- $\eta_1 = 1,0$ for good bond conditions (see 8.4.2)

= 0,7 otherwise, unless a higher value can be justified with regard to special circumstances in execution

 $f_{\text{ctd}}(t)$ is the design tensile value of strength at time of release; $f_{\text{ctd}}(t) = \alpha_{\text{ct}} \cdot 0, 7 \cdot f_{\text{ctm}}(t) / \gamma_{\text{c}}$ (see also 3.1.2 (8) and 3.1.6 (2)P)

Note: Values of η_{p1} for types of tendons other than those given above may be used subject to a European Technical Approval

OCCUPUCA OCCUPUCA

Transmission length

(2) The basic value of the transmission length, *I*_{pt}, is given by:

 $I_{\rm pt} = \alpha_1 \alpha_2 \phi \sigma_{\rm pm0} / f_{\rm bpt}$

where:

- $\alpha_1 = 1,0$ for gradual release
 - = 1,25 for sudden release
- $\alpha_2 = 0,25$ for tendons with circular cross section
 - = 0,19 for 3 and 7-wire strands
- ϕ is the nominal diameter of tendon

 $\sigma_{\rm pm0}$ is the tendon stress just after release

(3) The design value of the transmission length should be taken as the less favourable of two

(8.16)

Cross sectional properties

Composed section proporties:

$$E_{cm}(fck) := 22000 \cdot \left(\frac{fck+8}{10}\right)^{0.3} \qquad n_{top} := \frac{E_{cm}(f_{ck,topping})}{E_{cm}(f_{ck})} = 0.868 \qquad n_{fc} := \frac{0.7 E_{cm}(f_{ck,core})}{E_{cm}(f_{ck})} = 0.607$$

Section properties depending on distance x:

$$A_{ci}(x) := A_{c} + n_{top} A_{topping} + n_{cores}(x) \cdot A_{core}$$

$$Y_{ci}(x) := \frac{A_c \cdot Y_c + n_{top} A_{topping} \cdot Y_{topping} + n_{cores}(x) \cdot A_{core} \cdot Y_{core}}{A_{ci}(x)}$$

$$\mathbf{I}_{ci}(\mathbf{x}) := \mathbf{I}_{c} + \mathbf{A}_{c} \cdot \left(\mathbf{Y}_{c} - \mathbf{Y}_{ci}(\mathbf{x})\right)^{2} + \mathbf{n}_{top} \cdot \mathbf{I}_{topping} + \mathbf{n}_{top} \cdot \mathbf{A}_{topping} \cdot \left(\mathbf{Y}_{topping} - \mathbf{Y}_{ci}(\mathbf{x})\right)^{2} + \mathbf{n}_{cores}(\mathbf{x}) \cdot \mathbf{I}_{core} + \mathbf{n}_{cores}(\mathbf{x}) \cdot \mathbf{A}_{core} \cdot \left(\mathbf{Y}_{core} - \mathbf{Y}_{ci}(\mathbf{x})\right)^{2}$$

$$S_{ci}(x) := S_{c} \frac{Y_{Sc} + (Y_{ci}(x) - Y_{c})}{Y_{Sc}} + n_{cores}(x) \cdot A_{Sc.core} \cdot \left[Y_{Sc.core} + (Y_{ci}(x) - Y_{c})\right]$$

 DODOR
 OPCIA
 OCCUPICA
 OCUPICA
 OCUPICA<

Shear tension capacity: (simplified formula added with core filling)

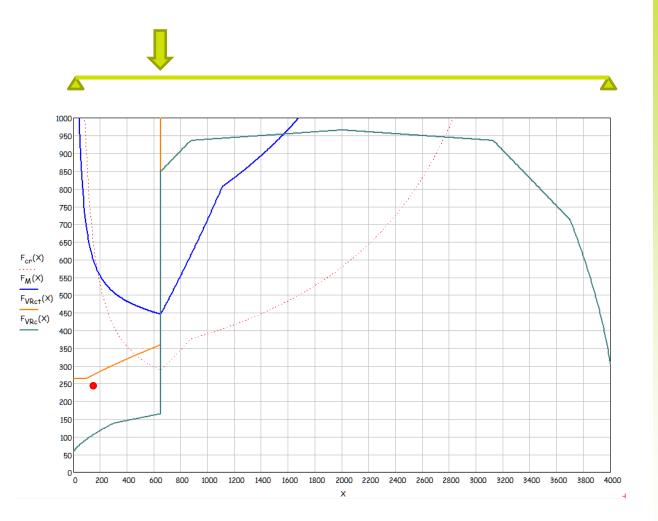
$$\varphi := 1.0 \qquad \beta := 1.0$$

$$V_{\text{Rct}}(x) := \begin{vmatrix} Lx \leftarrow \max\left(0.5 \cdot a_1 + Y_c, \text{distance}(x)\right) \\ \sigma_c \leftarrow \frac{F_p(Lx)}{A_c} \\ \hline \frac{I_{ci}(x)}{S_{ci}(x)} \left(\varphi \cdot b_{w,slab} \cdot \sqrt{f_{ctm}^2 + \beta \sigma_c \cdot f_{ctm}} + b_{w,core}(x) \cdot f_{ctm.core} \right)$$

10000000

A260 12 Ø12,5 no topping

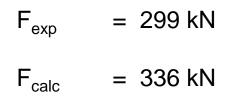
$$F_{exp}$$
 = 243 kN
 F_{calc} = 274 kN

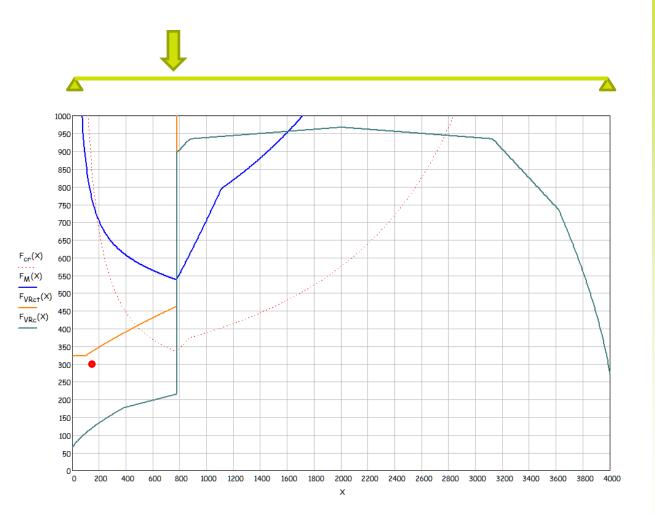


25

echnical Seminar 2015, October 21-22, Malmö - Sweden

A260 12 Ø12,5 50 mm topping





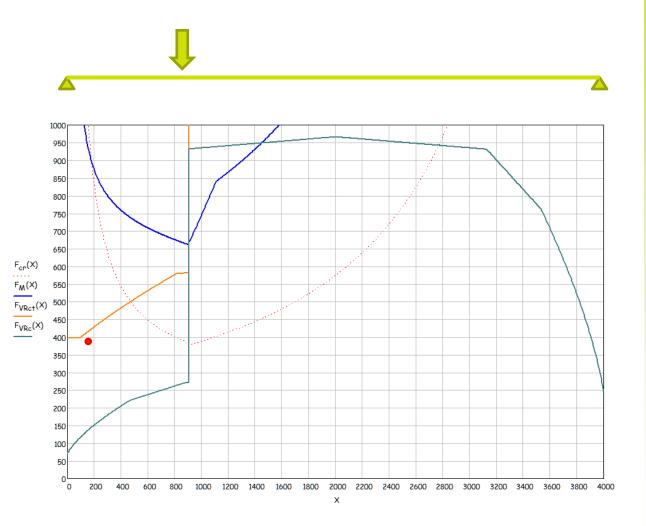
26

⁻echnical Seminar 2015, October 21-22, Malmö - Sweden

0000000

A260 12 Ø12,5 100 mm topping

$$F_{exp}$$
 = 384 kN
 F_{calc} = 414 kN



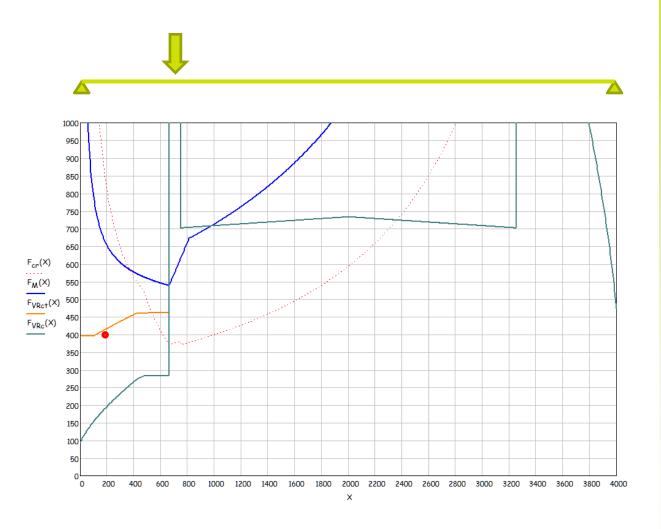
27

Technical Seminar 2015, October 21-22, Malmö - Sweden

Filled cores

VX265 10 Ø12,5 no topping

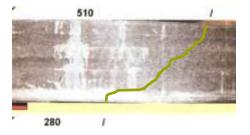
 F_{exp} = 398 kN F_{calc} = 407 kN



28

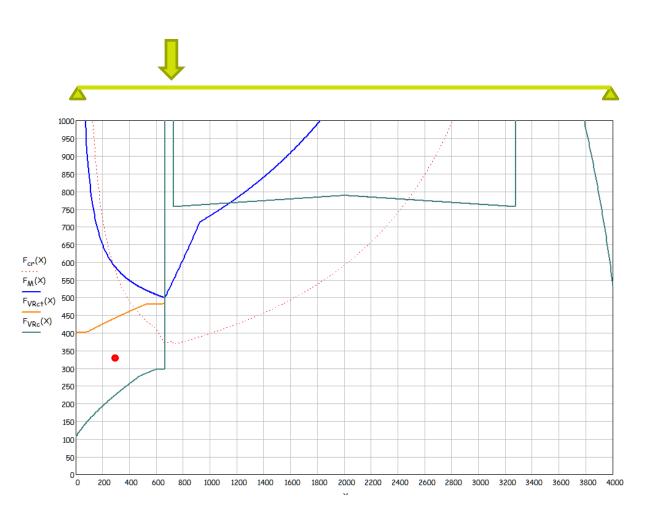
echnical Seminar 2015, October 21-22, Malmö - Sweden

Filled cores



5-265 10 Ø12,5 no topping

 F_{exp} = 330 kN F_{calc} = 405 kN

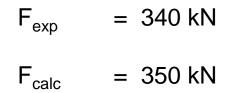


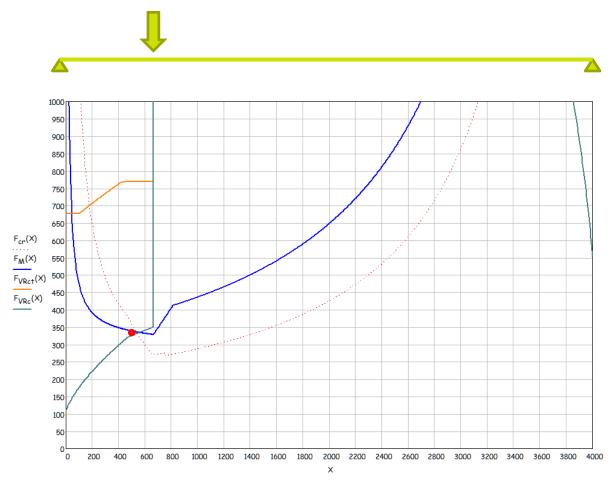
29

Fechnical Seminar 2015, October 21-22, Malmö - Sweden

Filled cores

260 5 Ø12,5 no topping





30

Technical Seminar 2015, October 21-22, Malmö - Sweden

Conclusions

- Structural topping increases the shear resistance as well for shear tension as for shear flexural capacity
- The design model according to EC2 predict the same failure mode as in the tests.
- Magnitude of the capacity of the tests corresponds with EC2 calculation model.
- The bond of the core filling is a critical parameter.
- Filled cores increases the shear capacity but also the failure can shift to another mode. (to anchorage failure)

