IPHA Technical Seminar 2015

October 21-22, Malmö - Sweden

Transmission length and shear capacity in hollow core slabs

Name: Dr Kim S Elliott

Company: Consultant ,UK

Background

Transmission length L_t is the length required to develop full prestress.

Reduced prestress within this zone reduces shear capacity.

Increased transmission length also extends the region of reduced prestress at holes and notches.

Historical increase in transmission length

CP110 $L_t = 30 \phi$ for strand

B8110 (C30 cube strength at transfer) $L_t = 44 \phi$ for helical strand and $L_t = 73 \phi$ for indented wire.

EC2 (C25/30 cylinder/cube strength at transfer) Design length = 1.2 x basic length I_{pt} $I_{pt2} = 70 \phi$ for helical strand and $I_{pt2} = 110 \phi$ for indented wire.

Are these values valid for prestressed hollow core floor units made by slipforming/extrusion and then cut to length?

- Research carried out at Nottingham University in 2010-11 funded by UK PFF (Precast Flooring Federation) and supported by 4 manufacturers
- To measure real transmission lengths L_t and shear capacities $V_{Rd,c}$ in prestressed hcu and present relationship between them

- Research carried out at Nottingham University in 2010-11 funded by UK PFF (Precast Flooring Federation) and supported by 3 manufacturers
- To measure real transmission lengths L_t and shear capacities $V_{Rd,c}$ in prestressed hcu and present relationship between them

2015. October 21-22. Malmö - Sweden

- Definitions and values from some codes
- Experiments: transmission length and shear capacity
- Comparison of tests vs code values
- Modified equation for $V_{Rd,c}$ in terms of L_t

Figure 2.2 Longitudinal Strains in the End Zone Before and Immediately After Prestress Transfer (adapted from Figure 2.11 of Chandler (1984))

CEB-FIP Guide to Special Design Considerations for Precast Prestressed Hollow Core Floors (1999)

Values from EC2 and other international codes

Comparison of transmission length with research results shows EC2 exceeds nearly all the data

Technical Seminar 2015, October 21-22, Malmö - Sweden

Cast end vs. cut ends.

Are the basic expressions for transmission length for freshly cast ends?

Fechnical Seminar 2015, October 21-22, Malmö - Sweder

Cast end vs. cut ends.

.. or at a cut end where the prestress is interrupted, rather than developing from a cast end?

Cast end vs. cut ends.

Results from prestressed beams show 26% reduction for cut rather than cast.

Bruce W. Russell *et.al.*, Measurement of Transfer Lengths on Pretensioned Concrete Elements, Journal of Structural Engineering, May 1997.

Specimen Length (mm)

and a 23% reduction.

Although the exact details are not known, and are certainly not applicable to hollow core slabs, it's worthy of further investigation.

rechnical Seminal 2015, October 21-22, Maimo - Sweden

Experimental programme

To : measure L_t in hcu using 5 mm, 5 and 7 mm wire, and 9.3 mm strand

To : compare results with "basic" values, i.e. using actual material and geometric data, without PSF

To : compare with EC2 design values

To : L_t in T beams (from beam and block floors) 5 mm wire with 'cast' and 'cut' ends

To : ultimate load test in shear

To : correlate shear capacity with L_t

To : determine a value of L_t that will give same basic shear capacity as in tests, and use this to propose a reduction factor for L_t in the EC2 equation for shear capacity

Hollow core slabs 4.0 m long x 600 mm wide x 150 mm deep

Tarmac Precast – 5 mm wire (W) Coltman Precast – mixed 5 and 7 mm wire (M) Creagh Concrete – 9.3 mm strands (S)

Fechnical Seminar 2015, October 21-22, Malmö - Sweder

Cast T beams were 4.0 m long x 135 mm wide x 225 mm deep

Hanson Building Products – 5 mm wire (TB)

Technical Seminar 2015, October 21-22, Malmö - Sweden

X-beams were 4.0 m long x 100 mm wide x 150 mm deep, longitudinally cut from 600 mm wide hollow core

Coltman Precast Ltd. 7 and 5 mm wire (X)

1 no. 7 mm wire and 1 no. 5 mm wire

Transmission length was measured using the "trepanning" method.

Attach strain gauges to the soffit of the units.

Distances = 300, 450, 600, 750 and 900 mm.

Cut the gauges out, thus releasing the prestrain, and measure the difference.

Plot the strain profile and deduce *L_t* using the CEB-FIP 90% rule.

Fechnical Seminar 2015, October 21-22, Malmö - Swed

Transmission length for hollow core with 5 mm wire - HCU W1

echnical Seminar 2015, October 21-22, Malmö - Sweden

Transmission length for hollow core with mixed 7 and 5 mm wire - HCU M2

Technical Seminar 2015, October 21-22, Malmö - Sweden

Transmission length for hollow core with 9.3 mm strand - HCU S5

Technical Seminar 2015, October 21-22, Malmö - Sweden

All results for 5 mm wire slabs. Wide variation in strain output, but consistency in transmission length, 56 ϕ to 65 ϕ , mean = 62 ϕ

chnical Seminar 2015, October 21-22, Malmö - Sweden

T beams with cast ends. Transmission length mean = 80 ϕ

T beams with cut ends. Transmission length mean = 59 ϕ 26% reduction

hnical Seminar 2015, October 21-22, Malmö - Sweden

Unit type	Test L _t mm	L _t / dia ratio	Basic L _{pt} mm	Design L _{pt2} mm	Ratio L _t / L _{pt}	Ratio L _t / L _{pt2}
Hollow core 5 mm wire	313	63	317	618	0.99	0.51
Hollow core mixed 7 and 5 mm wire	380	63	346	593	1.10	0.64
Hollow core 9.3 mm strand	491	53	338	611	1.45	0.80
T beams 5 mm wire	347	69	286	520	1.21	0.67
X beams mixed 7 and 5 mm wire	369	62	340	593	1.09	0.62
Averages of transmission ratios					1.16	0.65

Transmission length values and ratios

Step 2 – ultimate shear tests to EN1168, Annex J

echnical Seminar 2015, October 21-22, Malmö - Sweden

Units containing 9.3 mm strand had wide webs relative to their flexural strength, and it was not possible to produce a true shear failure, even with a/h ratio = 1.8

Technical Seminar 2015, October 21-22, Malmö - Sweder

Shear tests with 5 mm wire

Actual $V_{Rd,c}$ = using measured strength, geometry, no PSF = 125.4 kN Design $V_{Rd,c}$ = using EC2 design equations and values = 71.1 kN Mean test value = 138.4 kN

Comparison of test v code values

$$V_{U} = \frac{I b_{w}}{S} \sqrt{f_{ctm}^{2} + \frac{L_{x}}{L_{pt}} \sigma_{cp} f_{ctm}}$$

Unit type	Test V _{Ed} kN	Basic V _u kN	Design V _{Rd,c} kN	Ratio V _{Ed} / V _u	Ratio V _{Ed} / V _{Rd,c}
Hollow core 5 mm wire	138.4	125.4	71.1	1.10	1.95
Hollow core mixed 7 and 5 mm wire	97.5	89.8	47.2	1.09	2.07
Hollow core 9.3 mm strand	63.8	111.1	65.3	0.57	0.98
T beams 5 mm wire	81.9	70.1	40.0	1.17	2.05
X beams mixed 7 and 5 mm wire	16.8	15.2	7.9	1.10	2.13
Averages of shear force ratios				1.01	1.88

inar 2015. October 21-22. Malmö - Sweden

Summary of shear tests and shear load to shear capacity ratios

1.11 and 2.05 ignoring

<u>Shear capacity vs transmission length</u> Hcu 5 mm wire

chnical Seminar 2015, October 21-22, Malmö - Sweden

Trend lines are close to parallel suggesting test results follow same *regime* as calculated values

chnical Seminar 2015, October 21-22, Malmö - Sweden

echnical Seminar 2015, October 21-22, Malmö - Sweden

T beams 5 mm wire

Technical Seminar 2015, October 21-22, Malmö - Sweden

Modified equation for $V_{Rd,c}$ based on tests and analysis

Shifting the transmission length

Simulation

Shifting the transmission length

hnical Seminar 2015, October 21-22, Malmö - Sweden

Simulation

Shifting the transmission length

chnical Seminar 2015. October 21-22. Malmö - Sweden

Simulation

Shifting the transmission length

hnical Seminar 2015, October 21-22, Malmö - Sweden

Shifting the transmission length

Shifting the transmission length

Hollow core units pretensioned using 5 mm wire.

Shift = 79 mm or ratio = 0.75

echnical Seminar 2015, October 21-22, Malmö - Swede

Hollow core units pretensioned using 7 and 5 mm wire

Unit type	Test V _{Ed,mean} kN	Basic V _u kN	Test L _t mm	Shifted L _t mm	Ratio of shifted / test L _t
Hollow core 5 mm wire	138.4	125.4	313	234	0.75
Hollow core mixed 7 and 5 mm wire	97.5	89.8	380	257	0.68
Hollow core 9.3 mm strand	63.8	111.1	491	No result	
T beams 5 mm wire	81.9	70.1	347	202	0.61
X beams mixed 7 and 5 mm wire	16.8	14.8	369	240	0.65
Averages of shifted ratios					0.67

Shifted values for transmission lengths

Technical Seminar 2015, October 21-22, Malmö - Sweden

0000

$$V_{Rd,c} = \frac{I b_w}{S} \sqrt{f_{ctd}^2 + \frac{L_x}{0.67 L_{pt}}} \ 0.9 \ \sigma_{cp} \ f_{ctd}$$

Unit type	Test V _{Ed,mean} kN	Basic V _u kN	Test L _t mm	Shifted L _t mm	Ratio of shifted / test L _t
Hollow core 5 mm wire	138.4	125.4	313	234	0.75
Hollow core mixed 7 and 5 mm wire	97.5	89.8	380	257	0.68
Hollow core 9.3 mm strand	63.8	111.1	491	No re	esult
T beams 5 mm wire	81.9	70.1	347	202	0.61
X beams mixed 7 and 5 mm wire	16.8	14.8	369	240	0.65
Averages of shifted ratios					0.67

Shifted values for transmission lengths

Technical Seminar 2015, October 21-22, Malmö - Sweden

0000

echnical Seminar 2015, October 21-22, Malmö - Sweden

Final summaries – raw data

echnical Seminar 2015, October 21-22, Malmö - Sweden

Final summaries - test / EC2

Conclusions

36 tests to measure L_t and shear capacity of extruded and slipformed hollow core slabs, X beams (cut from hcu) and cast T beams.

CEB-FIP method was used to determine L_t from strain distributions.

 L_t varied from 240 to 550 mm, but when normalised with respect to EC2, Part 1-1, clause 8.10.2.2, EC2 L_{pt} are between 1.3 and 2.5 times greater than measured values.

Conclusions

Ultimate test shear varied from 0.9 to 1.3 times the basic calculated capacity.

The ratio of test to EC2 $V_{Rd,c}$ = 1.7 to 2.6.

Reduction in L_t for 'cut' v 'cast' ends was 80ϕ to $59\phi = 26\%$. Hollow core units all have cut ends.

"Shifting" L_t to a position where test shear = calculated shear, suggests L_t may be modified by a factor between 0.61 and 0.75, leading to recommendation :

$$V_{Rd,c} = \frac{I b_w}{S} \sqrt{f_{ctd}^2 + 1.5 \alpha 0.9 \sigma_{cp} f_{ctd}}$$

Thank you for your attention

Technical Seminar 2015, October 21-22, Malmö - Sweden