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Design models for diaphragm action

Arch action

Strut and tie
action
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Design with hollow core slabs

The assemblee of slabs should carry both the load in vertical direction and act as a
diaphragm to transfer the horizontal loads on the structure to the stabilizing walls
(and from there to the foundations).
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Model of load transfer: arch action
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Model of load transfer: arch action
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Model of load transfer: arch action
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Suspension reinforcement to bring load to
position above arch
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Loads due to wind tension and column inclination (in red colour) apply below the arch
that should carry them. Therefore suspension reinforcement is required
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Suspension reinforcement to bring load to
position above arch
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Coupling bars are provided at the end of the hollow core slabs in sleeves, creating
tensile capacity through the slabs from bottom to top
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Coupling bars in slabs in longitudinal
direction to provide suspension capacity

1]‘:31(5;_ 2 per slab
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-filled afterwards
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Shear capacity of joints between slabs
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Principle of shear transmission across
joints or rough interfaces
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Original shear friction model

Improved shear friction model:
(smooth saw teeths)

saw teeths with micro roughness
Vrd = O, tano Vrd = Co + O, tana
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Principle of shear transmission across
joints or rough interfaces

Vg
mMﬂfh Shear friction model with confining reinforcement

Vra = Co +pfyatana
or

Vra = Cfcta TH-Pfya
L yield strength of steel
reinforcement ratio

P /<\"\_,
-
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. coefficient of friction
depending on roughness
Ved \ Design tensile strength of

concrete

Coefficient depending on
roughness

Design shear strength of joint

Maximum confining
capacity of reinforcement
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Principle of shear transmission across
joints or rough interfaces

Surface description
type

Very Surface cast against  0.025 -0.10
smooth formwork in steel,
smooth Surface created by 0.20 0.6

sliding formwork or
extrusion, or free
surface without
treatment after
vibration

rough Profilation of at least 0.40 0.7
Ah =3mm at Al =
40mm

indented Surface provided with  0.50 0.9
keys

Parameters for interface shear according to EN 1992-1-1
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Longitudinal joints with extruded faces
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Category
"smooth”
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Providing confining stresses in joints by
transverse reinforcement to increase shear

capacity

= e cr g .
Transverse reinforcement fl‘t
providing confining action el | |
for generating sufficient \ VAR - = N
shear capacity of joints 5 M

et Ll

Shear resistance of edge X ?
beams can be added. ! 3 1 1 g ! I 1 I 1

EN-1992-1-1 (Cl. 10.9.2.(12) limits the mean shear stress vg4 in the joint to 0.15 N/mm2,
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Large scale test at TU Delft for "demountable hollow
core floors”

Hollow core floor with longitudinal joints made with a low strength
mortar f.= 1-2 N/mm? in order to enable demountability

S GNeemer2
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Design of slabs for diaphragm action

Verification of shear capacity of longitudinal grouted joints between hollow core slabs

Coefficient of
friction p
2,0
15
w=020 n=4000 | H27)
n=1000 %83,
7 -2000 T———l _w=03 | +33)
L n=3000 | —{(25)

0,5

0 05 70 15 2,0 25 30

Shear displacement (mm)

n = number of load
cycles

Grouted joints in precast floors should Shear test at w = initial crack width
normally be assumed to be cracked cracked joint
due to restraint stresses. Possibly also lc)oe:ewggl‘):"‘(’_lquhouow IVa|Ute u i 1602h|8/|d5 tgue to é}t

, : east up to 0,2 N/mm? even for
fatigue stresses occur due to wind Delft), for very low a low strength mortar
Forces. strength mortar
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Design of slabs for diaphragm action

Td
-, -.
/'/
Y'A.
= o Al Assumed distribution
N ~ S L"
i y P, of shear stress
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V4
Tests at TU Delft showed that no shear slip will occur if the friction

angle is below p = 1,0 even after thousands of load cycles.
If this is the case the following condition should be satisfied:

Veg ! Aty <10

_ , e Shear test at joint

Where V4 = design shear force in cr|’F|caI joint | | N between two hollow
A, = cross sectional area of reinforcement intersecting the joint. core slabs (TU Delft)
f,a = design yield stress of reinforcement
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Particular observation

If the joint cracks due to restrained shrinkage or bending, the crack
creates keys, because of the variability of the interface strength in the
joint faces
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Increasing the shear capacity of the joints

&

By profilating the edges of the hollow core slab the shear resistance is
raised to category 4 “indented” ¢ = 0.5 and p = 0.9

Failure criteria: - yielding of ties
- compression failure of concrete
Capacity can be determined by tests
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Increasing the shear capacity of the joints
Applying a structural topping

Bd / Insitu infilt
Precast Hollow-Core-Slabs

Reinforcing mesh Y

Thickness reinforced topping = 50
mm
- Function: precast element provides
restraint against compressive forces
and buckling. Topping takes care of
S TS U shear across the joints

Reinforcing mesh [Cast-ln-placeg topping

Precast Hollow-Core-Slabs
Section B-B
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Summary of functions of reinforcement

A, - bending resistance of floor in-plane

- shear resistance of joints in-plane

- shear resistance of joints out of plane
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Summary of functions of reinforcement

A, - suspension reinforcement for wind tension load

- robustness of support
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Summary of functions of reinforcement

A.; - suspension reinforcement
- robustness of intermediate support
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Summary of functions of reinforcement

A., - in-plane shear capacity of longitudinal joints
- out of plane shear capacity of longitudinal joints
- eventual tensile tie for arch
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Summary of functions of reinforcement

A.; .transmission of horizontal loads from floor to stabilizing walls
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Summary of functions of reinforcement

A.; Further details about shear connector
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General design considerations

Choice of the correct load bearing model
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Diaphragm with opening:

For wind from the most
favourable side an inner lever
arm z = 0,8h, applies.

For wind from the other side
the lever arm should be
reduced to z = 0,8h; g
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General design considerations

Choice of the correct load bearing model

Vol L L L L L] Two options for bearing
7 verical Mechanism:
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General design considerations

Choice of the correct load bearing model
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Left side: solution with strut and tie model
Right side: solution with arch
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General design considerations

Choice of the correct load bearing model
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General design considerations

Choice of the correct load bearing model (strut and tie)
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Hollow core floors subjected to horizontal
action
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Floors with two functions: Slabs to be
- carrying the traffic load designed for
- resisting the horizontal soil pressure buckling
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Hollow core floors subjected to horizontal
action o
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To be regarded: - out of plane deformations of the slab occur due to prestressing,
horizontal and vertical loads to be regarded for buckling capacity

- the resist buckling the slab should be designed at two sides:
therefore a reinforced structural topping is provided.
- the floor should be checked in the two principal directions
- buckling could occur in upwards and downward direction
- also long term deformations should be regarded

L GNeemer2y s
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Hollow core floors subjected to horizontal
action
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Structural system to calculate second order moments for downward buckling
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Hollow core floors subjected to horizontal
action

- First calculate the deflections of the unit without axial load by the soil both for short
and long term, in upward and downward direction

- Add a tolerance, or an initial camber of 20 mm as requested by EN 1992-1-1, Cl.
6.1(4)

- Calculate the bending moments including the eccentric normal force by the soil, the
prestressing force and the vertical loads

- Calculate the reinforcement necessary for the structural topping

- Calculate the additional deflection due to the normal force by the soil

- Follow a stepwise calculation: in any step the additional eccentricities will become
smaller (in a good design)

- In a few steps the final situation is found with the governing moments, due to
second order effect.

- The final total moment should be checked against the capacity of the slab. If
necessary, some prestressing strands should be added

S GNeemer2oy oy
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Hollow core floors subjected to horizontal
action

Verification in the other direction:

The buckling effects logically only
occur in the supporting beams

The axial loads in the beams should be
calculated regarding the stiffness of the
walls
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Regarding second order effects in floors
without structural topping

Wind
///, g Wind force per floor (per m’ width)
% a2 de =h|Elwd (Cl + CZ)
qwdl / g

y /wdz = hEdez L

Hyar = hiQya ?f/ Ih suction
/// pressure

TIT=0/7=///=

Imperfections (inclination)
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V

(_7’___:'/[ O‘i’ - V
) 1

/__,/,/ﬂ_///_ w«— e — Case (&) mostly decisive for
individual floors

a = code value, depending on
number of vertical elements
working together per floor

Case @ mostly decisive for
Vs, stabilizing parts (walls, core)

==

H = a(V;—V,) H = a(V,+ V,)
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Regarding second order effects in floors
without structural topping

B AN
\\ \
. \
Horizontal load _ I~ \ _6\ d = displacement due to horizontal load
schematic ! v | T on floor (wind and imperfection), due
( ) LN | :
17 /f | to bending
/ / (decrease of bending stiffness due to joint
J / opening to be taken into account (next
' S sheet)
| — 3, = deflection caused by (H; + H,,)
. I 52, i o, = deflection caused by (H, — H,)
h 1 ' AO(l = 61/h
e aa L Aa, = (8,+3,)/h
| o v O AH = AoV, + Aa,lY, (increase of
h ! |' A horizontal load on slab (first step in
A eyl second order calculation)

k]_ = AH/H
magnification factor f = 1/(1 - k)
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Regarding second order effects in floors

without structural topping
Determination of bending stiffness of floor regarding joint opening

TR o
T | hesgget

Steel stress in joint under moment M :
Mean steel strain in tensile tie: €, = (lp/Dgap)

o, = M/(z[A,)

Steel strain in joint &, = o /E, Mean curvature under moment M: K = gg,/z
d to be calculated by integration of k over length
of floor
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Hollow core slabs
as a basic element
for beautiful
buildings
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