Structural integrity

Pieter van der Zee
CRH Structural Concrete | Belgium

IPHA TECHNICAL SEMINAR 2017
October 25–26. Tallinn, Estonia

Organized by
IPHA
INTERNATIONAL PRESTRESSED HOLLOWCORE ASSOCIATION
in cooperation with
supported by

BÜ | eesti betoonühing

EESTI EHIITUSINSENERIDE LIIT

CEB-FIP

sored by
PILIT | StruSoft | peikko | e-BETONELEMENT | CONSOLIS | ECOHollow | PRECAST | betoneks | TMB
DESIGN OF PRECAST CONCRETE BUILDING STRUCTURES

Structural integrity – design for accidental actions

Pieter van der Zee
Contents

1. Phenomenon
2. Dynamic effects
3. Design strategies
4. Design concepts
5. Categorisation of buildings
6. Design requirements
7. Primary local damage
8. Design methods
9. Detailing
Progressive collapse

• Ronan Point, London 16 May 1968

Progressive collapse of a part of an apartment building after a gas explosion at the 18th floor
Progressive collapse
Appartment building in Maastricht (NL)

Balcony on 5th floor collapsed due to misplacement of connecting reinforcement. The falling balcony broke all balconies below.
Progressive collapse - timeline

- 1970 PC in UK Building Regulations
- 1972 – PC in ANSI A58.1
- 1975 - NBC Canada
- 1976 - PCI recommends ties
- 1989 ACI 318 Structural Integrity provisions
- 1999 – DOD Interim ATFP Standards
- 2000 – GSA Standards for PC
- 2001 – DOD ITG on PC
- 2004 – UFC on PC

- 1968 Ronan Point
- 1970
- 1973 Skyline Plaza Collapse
- 1983 U.S. Marine Barracks Lebanon
- 1987 L'Ambiance Plaza Collapse
- 1995 Oklahoma City Federal Building
- 1996 Khobar Towers
- 9/11/01 Truck bomb
1. Phenomenon

A local failure results in the collapse of a whole building or a large part of it.

Scenario of possible effects caused by gas explosion

Due to explosion floor is lifted up and wall panel is pushed out
Sequence of building damage during blast

1. Blast wave breaks windows. Exterior walls blown in. Columns may be damaged.

2. Blast wave forces floors upward.

3. Blast wave surrounds structure. Downward pressure on roof. Inward pressure on all sides.
2. Dynamic effects

Accidental action to a building structure is associated with dynamic effects. The following different cases can be distinguished:

- dynamic effects related to the impact of the accidental action itself,
- dynamic effects related to the impact of falling parts in the building,
- dynamic effects related to the transition from the original load-bearing scheme to an alternative path of resistance.
Load-time diagram

Gas explosion
30 – 100 kN/M²

Explosives
50 kg TNT op 2,0 m: 33 MN/m²
Phases of ballistic impact

a) Missile Penetration and Spalling

b) Target Scabbing

c) Perforation

d) Overall Target Response
Airplane impact force

<table>
<thead>
<tr>
<th>Aircraft Type</th>
<th>Impact Velocity (m/s)</th>
<th>Impact Area (m²)</th>
<th>Impact Load (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boeing 707-720 (T13)</td>
<td>103</td>
<td>26.33</td>
<td>90.72</td>
</tr>
<tr>
<td>F16</td>
<td>150</td>
<td>2.60</td>
<td>14.60</td>
</tr>
<tr>
<td>Phantom RF-4E</td>
<td>215</td>
<td>7.00</td>
<td>20.00</td>
</tr>
<tr>
<td>Rafale</td>
<td>180</td>
<td>7.00</td>
<td>14.00</td>
</tr>
</tbody>
</table>

Fig. 11 Loading functions for the crash of Boeing 707 720, F16, Phantom RF4E and Rafale
3. Design strategies

The three basic physical protection strategies for buildings to cope with accidental actions are:

1) prevention of accidental actions;
2) protective measures to eliminate accidental actions;
3) structural measures preventing progressive collapse
Effect of building shape on air blast impacts

SHAPES THAT DISSIPATE AIR BLAST

SHAPES THAT ACCENTUATE AIR BLAST
Example of lay-out to decrease the risk of progressive collapse
4. Design concepts

Design for prevention of progressive collapse

a. Indirect method
 - Minimum tie provisions

b. Alternate load path method
 - A critical element is removed from the structure, due to an abnormal loading, and the structure is required to redistribute the gravity loads to the remaining undamaged structural elements.

c. Specific load resistance method
 - All critical gravity load-bearing members should be designed and detailed to be resistant to a postulated abnormal loading
Different building classes

See EN 1991-7 Table A.1 for classification

• Class 1: housing up till 4 floors
 -> no other constructive measurements
• Class 2a low risk: shops < 1000m²
 -> indirect method
• Class 2b high risk: 1000 m² < shops < 5000 m² and Class 3 hospitals etc
 -> make calculations or alternative load path or key element procedure
a) Indirect method

- Tie force approach

Schematic of tie forces in a skeletal or bearing wall structure
b) Alternate load path method

- The alternate load path method implies that:
 - The *alternate load path approach* requires that all the local damage must be bridged by an alternative load-bearing system: catenary action, cantilevering action, bridging action, suspension. The transition to this system is associated with dynamic effects that should be considered.
 - The structure in its whole must shown to be stable with the local damage under the relevant load combination.
c) Specific load method

- Critical load-bearing members are designed to resist a notional load
 - The *specific load approach* requires all critical load-bearing members to be designed and detailed to be resistant to a specified design value of accidental load.
 - Selection of the appropriate type and magnitude of the accidental load is critical and will vary with the occupancy and type of building.
 - Because of the subjective nature of this approach the other parts of the structure, such as tying the offending component into the structure, should be designed according to the alternate load path method.
Categorisation of buildings

Illustration of building classes

- 4/5 storey flats
- 2A or 2B if retail premises > 2,000m²
- 2 storey flats
- Over 1 storey retail

Illustration of building classes

21
Categorisation of buildings

Illustration of building classes
6. Design requirements and assumptions

- Structural lay-out
- Resistance
- Continuity
- Ductility and energy absorption
Design requirements and assumptions

• **Structural layout**

 The layout together with other measures are important. The following general design guidelines and suggestions for improving structural integrity include:

 - Good plan layout. For example, the bracing or shear walls should be so distributed throughout the building that no substantial portion of the structural framework is solely reliant on a single plane of bracing in each direction.
 - Integrated system of ties
 - Returns on walls
 - Changing span directions of floor slabs
 - Load-bearing internal partitions
 - Compartmentalised construction
Continuity

• Continuity of tie reinforcement around corners

Essential to develop the bridging capabilities needed for the transmission and redistribution of loadings
Continuity

- Tie reinforcement should cross the columns

Tie reinforcement is placed inside the stirrups of the beam
Ductility

• **Definition**

Ductility is measured in terms of the ductility factor Φ, the ratio between the deformation at the ultimate load Δ_u and the deformation at the yield point Δ_y.

$$\Phi = \frac{\Delta_u}{\Delta_y}$$
7. Primary local damage

- Eurocode EN 1991-1-7

(A) Local damage not exceeding 15% of floor area in each of two adjacent storeys
(B) Notional column to be removed:

Recommended limit of admissible damage
Primary local damage

• Load bearing wall structures

Extent of assumed wall damage with limiting measures taken for (B)
8. Design methods

a) The fully tied method (classe 2A)

For classe 2B en 3:
b) The alternate load path method
c) The specific load resistance method
 If key-element

d) System risk assessment
a) The fully tied method

• **Tie functions**

 • Peripheral ties ‘P’: prevent slabs from moving apart and generate the clamping forces that create friction forces in the joints, essential for the diaphragm action

 • Longitudinal ties ‘L’: take up horizontal forces from eccentric loading, wind, etc. and connect floors to the supporting structure

 • Transversal ties ‘T’: transversal coherence of the structure and bridging action in case of local damage by catenary action

 • Vertical ties: assure alternate load path in case of local damage

Tie reinforcement in wall frame construction
The fully tied method

- **Minimum tie provisions (Eurocode 1)**

1. **Framed structures**
 - for internal ties: \(T_i = 0.8(g_k + \psi q_k)sL \) or 75 kN, whichever is the greater
 - for perimeter ties: \(T_p = 0.4(g_k + \psi q_k)sL \) or 75 kN, whichever is the greater
 where \(s \) is the spacing of the ties
 \(L \) is the span of the tie

2. **Load-bearing wall construction**
 - for internal ties: \(T_i = \text{the greater of } F_t \) or \(T_i = \frac{F_t(g_k + \psi q_k) z}{7.5} \)
 - for peripheral ties \(T_p = F_t \)
 where: \(F_t \) is 60 kN/m or \(20 + 4 \ n_s \) kN/m, whichever is less
 \(n_s \) is the number of stories
 \(z \) is the lesser of 5 times the clear storey height, or the greatest distance in metres between the centres of the columns or walls spanned by a single slab

3. **Vertical ties**
 Each column or wall should be tied continuously from the foundations to the roof level
 The columns and walls should be capable of resisting an accidental force equal to the largest design vertical permanent and variable load reaction applied to the column from any one storey.
The fully tied method

- **Minimum tie reinforcement (EN 1992-1-1 §9.10)**
The fully tied method

- Recommendations Eurocode 2

Internal floor ties

\[F_{\text{TIE}} = 20 \text{ kN/m} \times \text{avg span} \]

Remark: tensile forces are determined per 1 m length of the support

Direct connection to external column

\[F_{\text{TIE}} = 150 \text{ kN} \]

Peripheral floor ties connected to beam or wall

\[F_{\text{TIE}} = 20 \text{ kN/m} \times \frac{1}{2} \text{ span} \]

Remark: tensile forces are determined per 1 m length of the support
The fully tied method example

\[g_k = 2.45 + 1.5 + 1.5 = 5.45 \text{ kN/m}^2 \]
\[q_k = 3 \text{ kN/m}^2 ; \psi = 0.7 \rightarrow 2.1 \text{ kN/m}^2 \]

- **Eurocode 1:**
 \[Ti = 0.8 \times 7.55 \times \frac{7 + 5}{2} \times 5.9 = 214 \text{ kN} > 75 \text{ kN} \]
 \[\omega = \frac{Ti}{f_yd} = \frac{214 \times 10^3}{500/1.0} = 428 \text{ mm}^2 \ \gamma_s = 1.0 \]

- **Eurocode 2 §9.10.1 (4)**
 \[Ti = \frac{7 + 5}{2} \times 20 = 120 \text{ kN} > 70 \text{ kN} \]
 \[\omega = \frac{Ti}{f_yk} = \frac{120 \times 10^3}{500} = 240 \text{ mm}^2 \]
b) The alternate path method

- **Mechanisms to provide for an alternate load path**

Alternative means of protection against progressive collapse in skeletal structures
Alternate load path method

- **Wall frame structures**

 - Bridging or catenary action
 - Suspension through vertical ties
 - Wall cantilever action
Alternate load path method

• **Design principles**

 • Avoid impact load by accumulation of debris
 • Strength, ductility and continuity of ties
 • Good plan lay-out

Possible collapse models of floors and roofs
Alternate load path method - example

- Failure of intermediate façade column

Suspension via column to above structure

Cantilever action of floor beam

Cable action of floor beam

\[R_H = (g_k + q_k) \frac{\ell^2}{8f} \]

\[f = 0.1 \ell \]

\[M_A = (g_k + q_k) \frac{\ell^2}{12} \]
Alternate load path method - example

- Failure of corner column or wall

Suspension via column to above structure

Cantilever action of floor beams

Corner column taken away

Lower wall panel taken away

Cantilever action in wall frame structures

\[M_A = (g_k + q_k) \ell^2 / 2 \]
c) **Specific load resistance method**

- **Design of key elements**
 - Where the effect of the removal of any single column or beam carrying a column would result in collapse of any area greater than 70 m² or 15% of the area of the storey, that member should be designed as a key element.
 - Key elements should be designed for an accidental loading not less than 34 kN/m², or the notional load imposed by authorities. EN1991-1-7 A.8
 - Any other member or other structural component which provides lateral restraint vital to the stability of a key element should itself also be designed as a key element for the same accidental loading.
d) Systematic risk assessment
EN1991-1-7 Annex B

• Search for:
 o A cause or threat
 o A mechanism (sequence, or event)
 o The effects (death casualties, wounded, cost, environmental impact ...)

Use ALARP principle B.5
(As Low As Reasonably Practical)
9. Detailing

• Realisation peripheral ties

Detail tie beam

Vertical tie connection

Tie provisions in skeletal tower building 26 floors
Detailing

• Ties for catenary action

Edge beam

Intermediate ebam

Tie provisions in skeletal tower buildings
Detailing

- Provisions for peripheral ties

Sleeves in columns for passage of ties
Detailing

• **Bridging by catenary action**

Floor beams supported by stirrups to catenary tie reinforcement
Catenary action

- Difference between monolithic and precast

Floor and beam work together

Tie reinforcement

Cast in situ

Joints between elements will break and we have torsional action at the support

Precast with elements

Big cracks between the elements

Probably the topping will delaminate from the slab due to big deformations

Catenary action due to tie reinforcement in 2nd phase
Detailing

- **Column to column connections**

 Example of column-to-column connection with good strength, anchorage and ductility characteristics to withstand abnormal loads from accidental actions.

 - Hole through column for continuity of tie reinforcement
 - Projecting bars from lower column anchored in grout tubes in upper column
Detailing

• **Beam to floor connections**

Examples of transversal tie reinforcements in floor-beam connections

(a) less good solution

(b) good solution
Detailing

- Wall to wall and wall to floor connections

Examples of wall-to-wall-to-floor connections
Detailing

- Bad placement of longitudinal rebars

Bars should be inside the stirrups
Membrane action

After a lorry broke the beam, and because the connection between steeldeck and beam, the beam couldn’t turn away the compression and traction still did it’s work.
Detailing

• Wall to floor connections

Typical section through load bearing edge wall
Detailing

• Wall to floor connection

Typical section through internal load bearing wall
Detailing

• Floor connections

Connection between reinforcement in structural topping and hollow core floor by means of vertical stirrups anchored in the longitudinal joints or in partial opened channel.
Detailing

• Stairs

Support beam for floor slab

(a) Reinforcement in stair scarf joint

Support beams for half-landing and landing

(b) intermittent scarf joint

Staircase to landing joint details
Thanks for listening

Are there any questions?