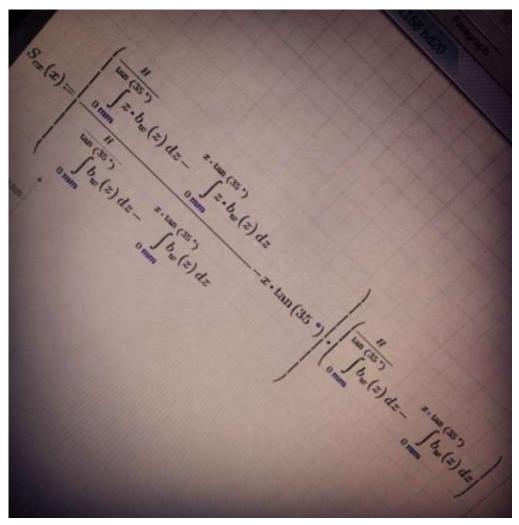
IPHA Technical Seminar 2015

October 21-22, Malmö - Sweden

Slim floor construction with hollowcores



Fredrik Lagerström

Strusoft AB, Sweden

How to design...

First moment of area for shear calculation according to EN1168

Flexibility (Architectual approach)

Very little interference of structural system

Flexibility (Architectual approach)

- Very little interference of structural system
- Possibility to redesign the floor plan depending on need
 - Multi-purpose buildings (offices, laboratories, meeting rooms, etc)

• Fewer lifts with the crane – minimize time for expensive cranes

- Flexibility (Architectu
 - Very little interference
 - Possibility to redesign
 - Multi-purpose buildin
 - Long spans, fewer col
- Cost-efficient design
 - Long spans
 - Fewer elements to cal
 - Focus on the difficult a
- Cost-efficient manufa
 - Long spans
 - Fewer elements to case
 - Fewer lifts with the crane minimize time for expensive cranes

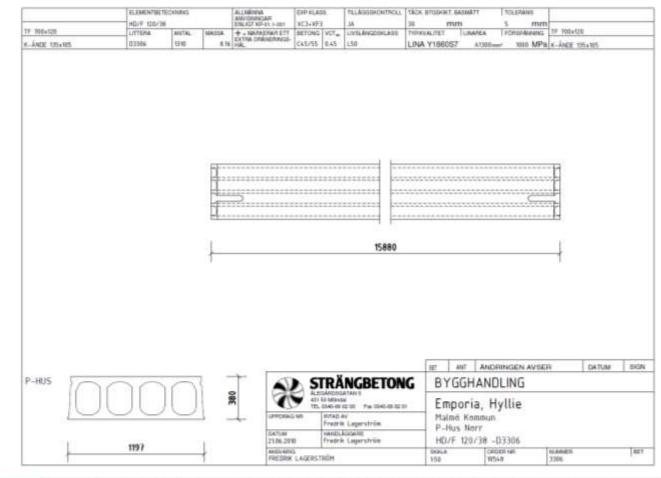
nar 2015. October 21-22. Malmö - Sweden

Flexibility (Architectual approach)

- Very little interference of structural system
- Possibility to redesign the floor plan depending on need
 - Multi-purpose buildings (offices, laboratories, meeting rooms, etc)
- Long spans, fewer columns

Cost-efficient design

- Long spans
- Fewer elements to calculate
- Focus on the difficult areas and let the bulk calculations be done faster.


Cost-efficient manufactury and assembly

- Long spans
- Fewer elements to cast, transport and assemble
- Fewer lifts with the crane minimize time for expensive cranes

Cost-efficient design

Fewer elements to calculate

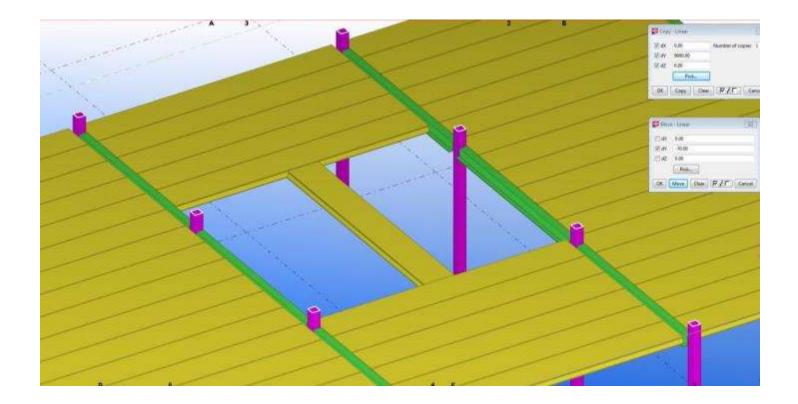
Technical Seminar 2015, October 21-22, Malmö - Sweden

Cost-efficient design

Fewer elements to calculate

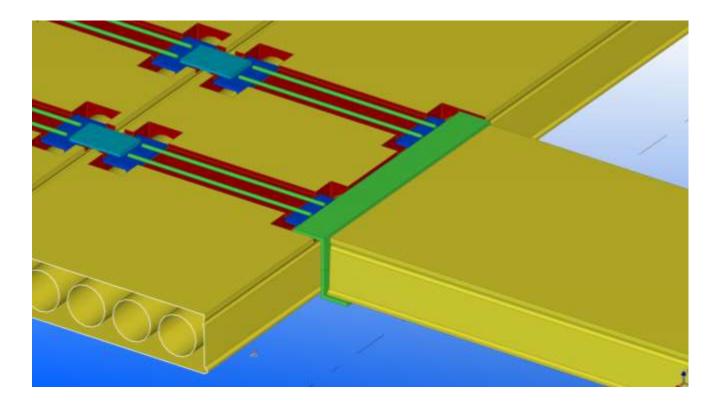
Cost-efficient manufactury and assembly

- Fewer elements to cast, transport and assemble
- Fewer lifts with the crane for larger area of construction



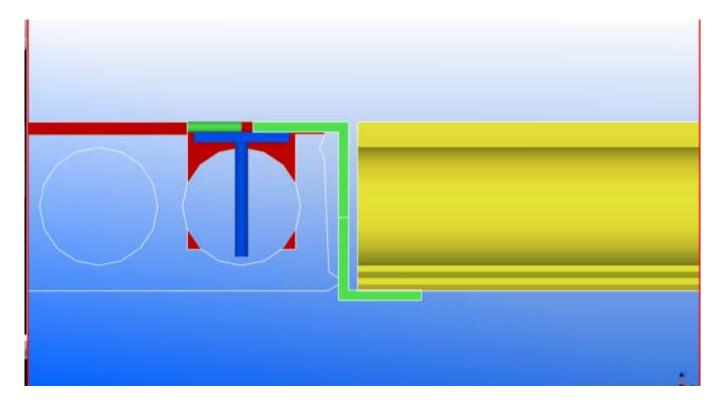
Emporia, Malmö, Sweden (Strängbetong 2008-2011)

How to slim down a structure


- The solution with large open areas are often appealing to architects
 - ...so they often want even more openings, and walking bridges.

How to slim down a structure

- The solution with large open areas are often appealing to architects
 - ...so they often want even more openings, and walking bridges.



Detail used on Malmö Arena, Malmö, Sweden (Strängbetong 2007-08)

How to slim down a structure

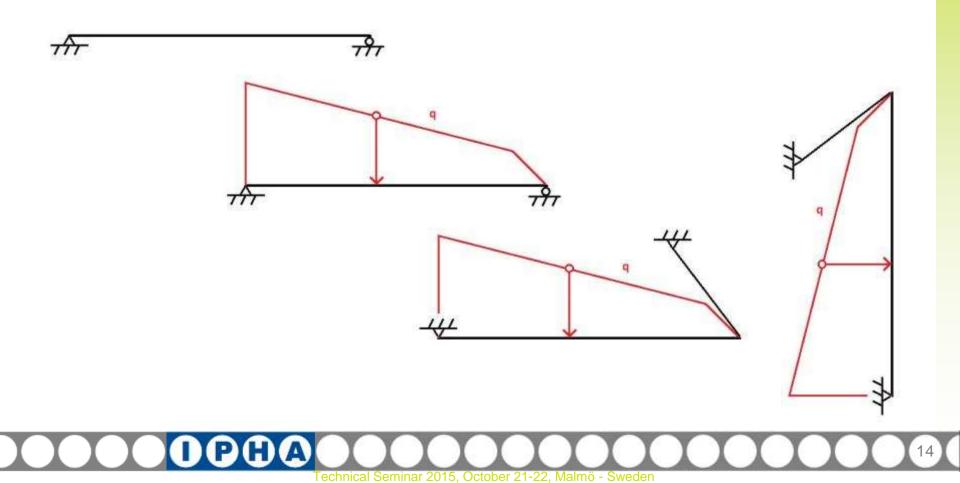
- The solution with large open areas are often appealing to architects
 - ...so they often want even more openings, and walking bridges.

Detail used on Malmö Arena, Malmö, Sweden (Strängbetong 2007-08)

Simplify, if possible!

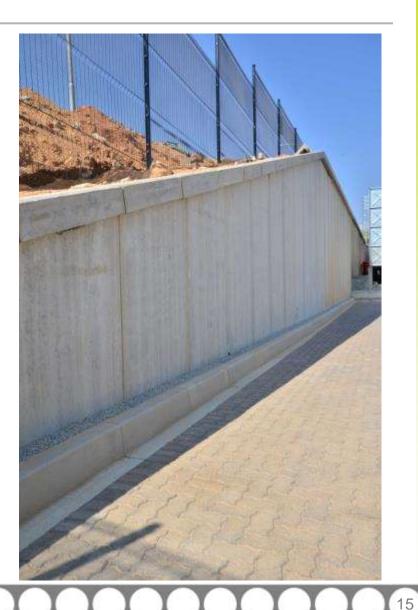
Oriels or glassed in balconies

In Sweden we very rarely use prestressing wires in the top!



Kv. Kronolotsen 2, Malmö, Sweden (Strängbetong 2007-2008)

DOCUMENT DOCUMENT


Other areas where hollowcores can be used

Retaining walls

Other areas where hollowcores can be used

Retaining walls

Echo, South Africa

Technical Seminar 2015, October 21-22, Malmö - Sweder

Other areas where hollowcores can be used

Retaining walls

Echo, South Africa

Regular hot rolled steel sections

OODGA <th

SWT beam

Flange beam that is filled with concrete in-situ

SWT beam

- Flange beam that is filled with concrete in-situ
- Connections to the hollowcores are welded to the beam web

Kv. Kronolotsen 2, Malmö, Sweden (Strängbetong 2007-2008)

October 21-22. Malmö - Sweden

VSAB – IQB-beam

• Flange beam that is welded and filled with concrete in the beam-factory

SCA, Gothenburg, Sweden (Strängbetong 2015)

Technical Seminar 2015, October 21-22, Malmö - Sweden

VSAB – IQB-beam

- Flange beam that is welded and filled with concrete in the beam-factory
- Connections to hollowcores with stirrups

SCA, Gothenburg, Sweden (Strängbetong 2015)

October 21-Malmo -

VSAB – IQB-beam

- Flange beam that is welded and filled with concrete in the beam-factory
- Connections to hollowcores with stirrups

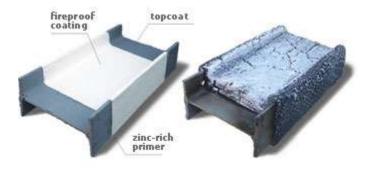
Technical Seminar 2015, October 21-22, Malmö - Sweder

Peikko Delta beam

Flange beam that is filled with concrete in-situ

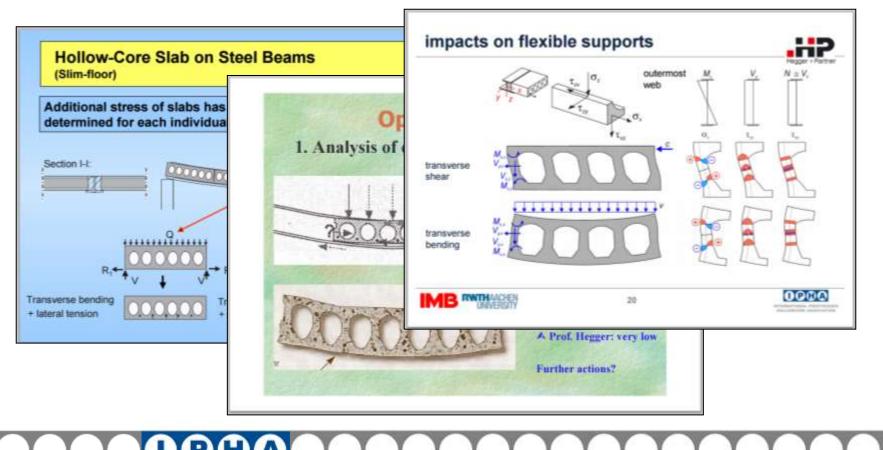
Peikko Delta beam

Flange beam that is filled with concrete in-situ



Using the knowledge of IPHA seminars in the design - Fire design

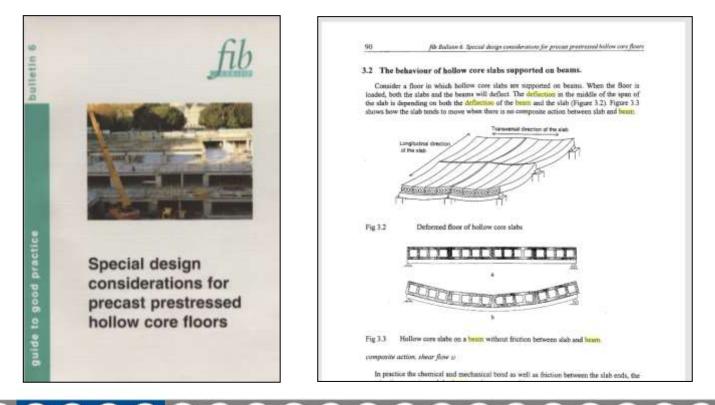
- EN1168 and EN1992-1-2
- IPHA technical seminar 2013 in Epernon, France
- Fire protection of exposed steel
 - Concrete cast in and around the steel
 - Gypsum
 - Fire paint



Fireproof coating system before and after fire exposure

Using the knowledge of IPHA seminars in the design - Flexible support

- Research projects 1991-95 by Matti Pajari, VTT, Finland
- Early software made by Dr. Gösta Lindström at Strängbetong (1996)
- Tracked the problem back to IPHA Technical seminar in Leuven, Belgium, 2003
 - Previous presentations are available at the IPHA homepage > members section

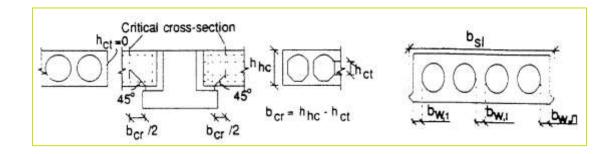


Fechnical Seminar 2015, October 21-22, Malmö - Sweden

26

Using the knowledge of IPHA seminars in the design - Flexible support

- Research projects 1991-95 by Matti Pajari, VTT, Finland
- Early software made by Dr. Gösta Lindström at Strängbetong (1996)
- Tracked the problem back to IPHA Technical seminar in Leuven, Belgium, 2003
 - Previous presentations are available at the IPHA homepage > members section
- FIB Bulletin nr 6

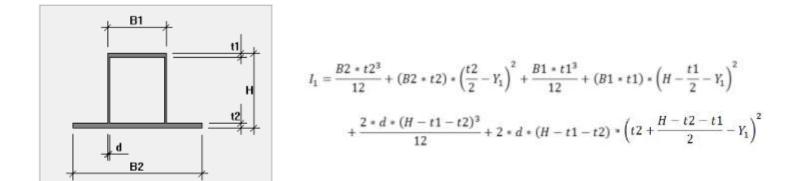

 DPHA
 October 21-22. Malmö - Sweden

Using the knowledge of IPHA seminars in the design - Flexible support

- Research projects 1991-95 by Matti Pajari, VTT, Finland
- Early software made by Dr. Gösta Lindström at Strängbetong (1996)
- Tracked the problem back to IPHA Technical seminar in Leuven, Belgium, 2003
 - Previous presentations are available at the IPHA homepage > members section
- FIB Bulletin nr 6
- EN 1168, soon?

EUROPEAN STANDARD	EN 1168:2005+A3	
NORME EUROPEENNE		
EUROPÁISCHENORM	Dynke 2011	
100 AF 200 AE AF 100 AE	Superingen 25 118 2024-42 20	
2	repart inner	
Precast concrete p	roducts - Hollow core stabs	
Param principal et min - Debe Avenue	Sound gate - Holpster	
This formula interactions are reprinted by DRT and Long 200 American Composition 2001 at 17 January 2008 and inter	Kanar menada kenaraman Kapagnanan Kapathi na Hisanang 2020. Semer Kabupatén Ng CBT na Tit mgani 2011	
201 memory are hours to completely the 2012/2012/2017 Descent for status of a restored period restoring proceeding approach may be also need or agricultur to the 2017/2012	mener Replance und dealers for uniters to program Excessory, n. Volk-inter los and interparting releases tomaring such release Et dangener Serie e V any CEN metaer	
This is character is betterable working on the other distance of the pro- prime the second billing of a 1/2011 member rest to new decays works are the official seconds.	In French Chertrals, A second A any time response mode to the estimate μ are restrictly to $225/2562,222$ have present Carrier for the correspondence of the test second	
SQN remies are the return standard tooles of Autors & France Terrors, Demony Dealer Hurger, Instein Antiget Remove Dealers, Dealer, Davide Terror	egun, Bagara Charla Systel Carol Results Devices Besting Tals Latva Latvaria Lucenteurg Nate Saharlants Sonias Prant. and est Dotal Dirgon.	
	cen	
DIMITS STRUCT	ETTER FOR CONCERNING AND	
Eliteration	Histy Dis with New Libert 2001	

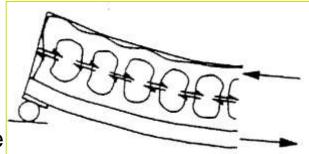
- Critical cross section
 - Weakest section in the hollowcore web


 OPCA
 <th

Critical cross section

Weakest section in the hollowcore web

Calculate geometry properties


Beam, hollowcore, joint- and topping concrete

Critical cross section

- Weakest section in the hollowcore web
- Calculate geometry properties
 - Beam, hollowcore, joint- and topping concrete

- Calculate forces due to geometry and loading
- Local effects such as prestressed strand slip and anchorage
- Combine into a principal stress in the web

$$\tau_{2.top} = \frac{3 * S_{f,top} * b_2}{4 * b_{cr} * b_{w,2}}$$

$$\sigma_{1} = \frac{-\alpha * \gamma_{p} * \sigma_{p} * A_{p}}{A_{c}} \qquad \tau_{1} = \frac{V_{d.g,2} * S_{2x}}{I_{2x} * b_{w,2}} + \frac{V_{d.imp,2} * S_{top,2x}}{I_{top,2x} * b_{w,2}} \qquad \tau_{2.imp} = \frac{3 * S_{f,imp} * b_{2}}{4 * b_{cr} * b_{w,2}}$$

$$\sigma_{ps} = \frac{\sigma_1}{2} + \sqrt{\frac{\sigma_1^2}{4} + \tau_1^2 + \left(\beta_f * \left(\tau_{2.top} + \beta_{top} * \tau_{2.imp}\right)\right)^2} \qquad \eta_{ULS} = \frac{\sigma_{ps}}{f_{ctd.hc}}$$

Serviceability limit state

- Check of crack width
 - Check against allowed crack width and exposure class (EN 206)
- Check of curvature of the beam
 - Compare with allowed curvature limit

Table 7.1N Recommended values of wmax (mm)

Exposure Class	Reinforced members and prestressed members with unbonded tendons	Prestressed members with bonded tendons
	Quasi-permanent load combination	Frequent load combination
X0, XC1	0,41	0,2
XC2, XC3, XC4	0,3	0,2 ²
XD1, XD2, XS1, XS2, XS3		Decompression
is set to g this limit n Note 2: For these	C1 exposure classes, crack width has no influ uarantee acceptable appearance. In the abso hay be relaxed. exposure classes, in addition, decompressio manent combination of loads.	ence of appearance conditions

$$\kappa = \frac{M_{imposed \ load}}{EI_{composite \ beam.k}}$$

Technical Seminar 2015, October 21-22, Malmö - Sweden

Summary

Enter design stage early to influence architects

- ... to suit your production (efficiency in time and cost)
- Reduce number of elements
 - Many small can become fewer long elements?
- Explore possibilities to use hollowcores in other fields
 - Try to influence contractor with a type of structure that suits your production

Earlier research are now on the way into the standards

- Previous presentations are available at Hollowcore.org
- Fire design is a major field for designers, flexible supports are the next?

...this is the last slide, I promise!

Thank you for your attention!

fredrik.lagerstrom@strusoft.com

