FIRE RESISTANCE HOLLOW CORE FLOORS

TESTING PRINCIPLES

Ir. Arnold Van Acker

Ms Civil Engineering, Belgium

Contents

- 1. Current fire test procedures for precast components
- 2. Importance of connections during fire tests on HC floors
- 3. Fire tests at TNO by dr. Joris Fellinger and conclusions
- 4. Tests carried out in Belgium
- 5. Tests carried out in Denmark
- 6. Proposal for new test procedure
- 7. Fire resistance hollow core slabs with holes for lifting

Standard fire test procedure

First tests in Belgium in 1971 on 265 mm slabs

- one single HC unit
 - length 6.00 m

First test

- 6 smooth strands Φ 12.5
- Shear failure at 36 min

Second test

- 6 indented strands Φ 12.5
- Shear failure at 29 min. Third test
- 6 strands Φ 12.5 with oval central wire
- Shear failure at 33 min.

Standard fire test procedure

Tests Danish Institute of Fire Technology 1998

4-point loads 135 kN in total

Real floor structure

HC connected to support structure

Fire tests at TNO Delft Simply supported narrowed units Tests on shear capacity and strand anchorage Pin support 38 Line load Roller Ø 8 40 B25 40 200 4x8 Ø 12 ¹⁰112 35 35 112 ¹⁰ 314 Section B

Horizontal crack can propagate till end of slab Horizontal crack cannot propagate; shear friction mechanism can function

Test results TNO

Web	A200 loading	: 22%	Rf: 96 min.	Failure: Anchorage
	X200	16%	125	Flexure
	XB200	18%	125	Anchorage
	XB200 Restrained	18%	159	Flexure
	VX265	23%	35	Shear-tension
	VX265	23%	25	Long. shear
	HVP260	23%	55	Shear-tension
	K400	23%	60	Shear-tension
	K400 Restrained	23%	30	Shear-tension
	K400 Filled Cores	23%	24	Shear-tension
Slab	XB200 filled cores	23%	117	Flexure
	K400	23%	33	Shear-tension
	VX265	23%	33	Shear-tension
	HVP260	23%	40	Anchorage
	HVP260	23%	42	Shear-tension
	HVP 260	23%	39	Shear-tension

Conclusions TNO tests

• BIBM congress 2005: Paper"Fire safe design of HC slabs with respect to shear and anchorage failure - Dr. Fellinger et all.

"A restraining force has a beneficial effect on the shear and anchorage behaviour. However the available restraint in a practical building is unknown and cannot yet be guarantee, as it is very sensitive to the way in which the HC units are connected to the rest of the construction on site. It has been recommended not to rely on such a beneficial effect, as it can not be assured in the design."

"... a realistic ratio of 17% of the ultimate shear capacity at room temperature is assumed as the design shear capacity under fire conditions. At an increase to 22%, it is shown that the fire behaviour limits the design only in rare cases when dealing with short spans and very high loads"

Tests in Belgium - results

Test N°	Slab thickness	Test load slab centre	Fire duration	Failure load after	V _{Rd} at normal	Shear load/ V _P
	mm	kN	minutes	test - kN	temp kN	Ka
T1 A	200	100	83	178 (B)	79/slab	86.8 %
В	200 + 50	100	83	254 (B)		
T2 A	200	100	120	292 (B)		
В	200	100	120	324 (B)		
T3 A	200	100	120	254 (B)		
В	200	100	120	267 (B)		
T4 A	265	100	120	305 (B)	148/slab	56.2 %
В	265 + 30	100	120	305 (Sh)		

Recent tests in Denmark

High shear loading

- 60 min fire exposure + 90 min.
 cooling with the load still applied
- Uniform loading: $\Rightarrow 65 \% V_{Rd}$: no failure $\Rightarrow 75 \% V_{Rd}$: no failure
 - \Rightarrow 80 % V_{Rd} : failure at 45'

Info: www.bef.dk/sw343.asp

Proposal new test procedure

- Better simulation of the real floor structure
 - ⇒ Concrete frame around floor (Underwriters Laboratories)
 The solution enables to restrain the floor in both longitudinal and transversal direction.
 - ⇒ Longitudinal restraining bars. The solution enables only a longitudinal restrainment, but it has proven to be sufficient.

The proposal should be discussed with CEN. Complementary tests could be performed at the new laboratory of CERIB. IPHA should take the initiative together with BIBM.

Rf HC with holes for lifting

Elevation temperature inside core ?

- \Rightarrow No tests data available
- \Rightarrow Inside cores not directly exposed to fire
- \Rightarrow Penetration of hot gases is limited
- \Rightarrow Cores are functioning as buffers
- During fire tests on HC floors, cracks up to
 4 mm width appear over the whole slab
 length, but do not affect the insulation criterion.
- ⇒ A more uniform temperature inside the cores will probably decrease the thermal stresses inside the webs.
- ⇒ Isotherm 500 °C inside beam 300 x 160 mm after 90' fire lies at ± 45 mm from the lateral surface.

Isotherm 500°C in a beam of 300 x 160 mm after 30', 60', and 90' exposure

Conclusions

The outline of the Isotherm at 500°C after 90' fire exposure is most probably as given on the figure:

- \Rightarrow at 30 mm from the soffit (resulting from tests)
- \Rightarrow At 15 mm on an average from the inside of the core
- \Rightarrow The strand temperature is about 350°C at 90'

The remaining cross-section inside the isotherm of 500°C is about 77% of the total cross-section. The shear load at the holes is 34.5% of the shear capacity at normal temperature. It can be concluded that the holes do not affect the shear capacity of the slab during a fire.

