Spalling in EN1168

Technical Seminar
October 26th and 27th 2011
RWTH-IMB Aachen (GE)

Bart Hendrikx, Echo
bart.hendrikx@echobel.com
1. Bursting, spalling and splitting: what’s the difference?
1. Bursting, spalling and splitting: what’s the difference?

- **Introduction**
 - Transfer of prestress force to the concrete is locally, with high stress concentrations.
 - Principle of Jean Claude Barré de Saint-Venant → prestress force spreads out into a linear stress distribution (anchorage zone).
 - Nonlinear stress distribution in this zone.
 - Complex stress state:
 - High compressive stresses just after the loading point.
 - High tensile stresses perpendicular to the line of action of the force (bursting and spalling).
1. Bursting, spalling and splitting: what’s the difference?

- **Bursting**
 - Spreading of the prestress force causes curved compressive stress trajectories which generates transverse tensile stresses (bursting stresses).
 - Bursting stresses occur along the line of action of the prestress force.
1. Bursting, spalling and splitting: what’s the difference?

- **Bursting**
 - Maximum stress is located at some distance behind the loading point.
 - Possible crack pattern (at release and its growth afterwards):

 ![Diagram showing tensile and compressive stress](image)

 - Tensile stress
 - Compressive stress
1. Bursting, spalling and splitting: what’s the difference?

- **Spalling**
 - Prestress force leads to compressive stress trajectories.
 - Parts of the concrete are not subjected to pressure.
 - Stress discontinuity between the compressed and non-compressed zones results in shear and tensile stresses.
1. Bursting, spalling and splitting: what’s the difference?

- **Spalling**
 - Eccentric prestress: the eccentricity will cause extra curving of the already curved compressive stress trajectories.
 - Area with spalling stresses is bigger.
 - Max. spalling stress is bigger.

 - Spalling stresses develop beside the loading point along the border of the member.

![Diagram](image)
1. Bursting, spalling and splitting: what’s the difference?

- **Spalling**
 - Maximum stress is located about mid height at member end.
 - Possible crack pattern (at release and its growth afterwards):
1. Bursting, spalling and splitting: what’s the difference?

- Spalling

 Crack opening is large!

 Crack length is large!
1. Bursting, spalling and splitting: what’s the difference?

- **Splitting**
 - Only in case of prestressing (prestress transfer bond).
 - Stresses occur locally around the tendons.
 - Radial compressive stresses due to, such as:
 - Loose cement paste particles get stuck (failure adhesion)
 - Hoyer effect
 - Lack of fit

 → circumferential tensile stresses
1. Bursting, spalling and splitting: what’s the difference?

- **Splitting**
 - Maximum stress is located in the beginning of the transmission zone (original diameter of prestressing steel).
 - Possible crack pattern (at release and its growth afterwards):
 - Splitting cracks and bursting cracks are difficult to distinguish.
1. Bursting, spalling and splitting: what’s the difference?

- How to check bursting, spalling and splitting in the design of the slab?
 - Bursting + splitting:
 Art. 4.3.1.2.2 EN1168: ‘Minimum concrete cover and axis distances of prestressing steel’.
 → c_{min} to the nearest concrete surface and to the nearest edge of a core.
 → independent of the magnitude of the prestressing (in France ‘chemins de fendage’)
 - Spalling:
 Art. 4.3.3.2.1 EN1168: ‘Resistance to spalling for prestressed hollow core slabs’.
 → formula max. stress → chapter 3 of this presentation.
2. Calculation maximum spalling stress
2. Calculation maximum spalling stress

- **Introduction**
 - Nonlinear distribution of longitudinal stress σ_x in the sections of the ‘disturbed’ anchorage zone \rightarrow Navier-Bernoulli hypothesis (plane sections remain plane after bending) is not valid.
 - Nonlinear distribution of transverse stress σ_y.
 - E.g. web I-beam:

 \rightarrow difficult to ‘design’ this area.
2. Calculation maximum spalling stress

- **Second half 20th century**
 - A lot of research on the tensile stresses in the transmission zone.
 - In the USA and Europe.
 - Mostly post-tensioning (higher stress concentration).
 - Impossible to present a complete overview.

- **Simple cross sections**
 E.g. Truss analogy of Mörsch:
2. Calculation maximum spalling stress

- Simple cross sections
 - Strut-and-Tie Model:

\[
\sigma_{sp} = 16 \cdot \left(\frac{e_0}{d} - \frac{1}{6} \right)^2 \cdot \frac{P_0 \cdot d^2}{e_0 \cdot l_m^2 \cdot b}
\]

Max. stress rectangular cross section:

This formula works if \(P_0\) acts outside the core of the cross section.
2. Calculation maximum spalling stress

- Simple cross sections
 - Kupfer’s method = equivalent prism analogy → equilibrium of a part of the transmission zone.

\[
\sigma_{sp} = \frac{8 \cdot P_0 \left(\frac{d^2}{6 \cdot e_0} - \frac{d}{108 \cdot e_0^2} - d + 2 \cdot e_0 \right)}{l_m^2 \cdot b}
\]

\(d'\) is chosen so that the resultant of the stresses acting at the transmission zone end is equal to the prestressing force.

→ CEB-FIB Model Code 1990
2. Calculation maximum spalling stress

Cross section hollow core slabs

- Not a simple cross section.
- Prestressing force is not distributed uniformly across the width of the slab.
- Transformation to simple cross sections (equivalent I-section).

→ Calculate the max. spalling stress with the discussed methods.
2. Calculation maximum spalling stress

- Cross section hollow core slabs
 - Transformation to simple cross sections (equivalent rectangular section).
 FEA of J.A. den Uijl (TU Delft) showed that the spalling stress of a rectangular section and a I-section are the same, as long as the relative eccentricity and the web width are the same.

\[
d_{eq} = \frac{e_0}{(e_0 - k) + \frac{1}{6}}
\]

\[
e_0 - k = \text{relative eccentricity}
\]

\[
k = \text{core radius of cross section}
\]
2. Calculation maximum spalling stress

- Cross section hollow core slabs
 - Finite element analysis
 - Analytical assessment of the spalling stresses is only approximately possible.
 - To get a better understanding about:
 - The influence of some parameters on magnitude;
 - Distribution of the stresses;

J.A. den Uijl performed finite element analysis.

\[
\sigma_{sp} = \frac{P_0}{b_w e_0} \left(2 \left(0.02 + 4 \alpha_e^{2.3} \right) \left(\alpha_e + \frac{1}{6} \right) \right) \left(0.1 + 0.5 \alpha_e \right) \left(1 + 1.5 \left(\frac{l_t}{e_0} \right)^{1.5} \left(\alpha_e + \frac{1}{6} \right)^{1.5} \right) = \text{max. stress}
\]

with \(\alpha_e = \frac{e_0 - k}{d} = \text{relative eccentricity} \) & \(l_t = \text{transmission length} \)
2. Calculation maximum spalling stress

- Cross section hollow core slabs
 - Den Uijl’s formula of σ_{sp}:
 - Web or whole section.
 - $\sigma_{sp} \leq f_{ctkj}$ = characteristic tensile strength at prestressing
 - Only for members with $d < 400$ mm.
 - Influence of upper reinforcement was not analyzed.
 - $\sigma_{sp} \leq f_{ctkj}$
 \[1990: \sigma_{sp} \leq \frac{f_{et,fl}}{\gamma_c} \text{ with } f_{et,fl} = \text{mean flexural tensile strength} \& \gamma_c = 1.5 \]
 \[2010: \sigma_{sp} \leq f_{ctd} = \frac{f_{ctk}}{\gamma_c} = \text{design concrete tensile strength} \]
3. Spalling stress according EN1168
3. Spalling stress according EN1168

For each web or for the whole section (strands/wires well distributed over the width of the element):

\[\sigma_{sp} = \frac{P_0}{b_w e_0} \cdot \frac{15 \cdot \alpha_e^{2.3} + 0.07}{1 + \left(\frac{l_{pt1}}{e_0} \right)^{1.5}} \cdot (1.3 \cdot \alpha_e + 0.1) = \text{max. stress} \]

With \(\alpha_e = \frac{e_0 - k}{d} = \text{relative eccentricity} \geq 0 \)

\[k = \frac{W_b}{A_c} = \text{core radius} \]

\(W_b = \text{section modulus bottom fibre} \)

\(A_c = \text{area of cross section} \)

\(l_{pt1} = \text{lower desing value of transmission length} \)
3. Spalling stress according EN1168

- Similarity with formula of J.A. den Uijl:

\[
\sigma_{sp} = \frac{P_0}{b_w e_0}.
\]

\[
\begin{align*}
\sigma_{sp} &= \frac{2(0.02 + 4\alpha_e^{2.3})(\alpha_e + \frac{1}{6})}{(0,1 + 0,5\alpha_e)(1+1,5\left(\frac{l_t}{e_0}\right)^{1,5})(\alpha_e + \frac{1}{6})^{1,5}} \\
&= \frac{15\alpha_e^{2.3} + 0,07}{1+\left(\frac{l_{pr1}}{e_0}\right)^{1,5}} \cdot (1,3\alpha_e + 0,1)
\end{align*}
\]

Rewritten with almost equal \(\sigma_{sp}\) as result (if \(l_t = l_{pr1}\)).

More background information on this transformation is welcome.
3. Spalling stress according EN1168

- Use the formula OR fracture-mechanics design shall prove that spalling cracks will not develop: study of the propagation of cracks using the method of finite elements.

- Visible horizontal spalling cracks in the webs are not allowed!

- Value of transmission length?
 - Calculated according EN1992-1-1 → rather high values.
 - Experimental research → up to 50% less!
 - Important parameter!
3. Spalling stress according EN1168

- Relative eccentricity ≥ 0:

 \[P_0 \text{ in core} \rightarrow e_0 < k \rightarrow \alpha_e = \frac{e_0 - k}{d} < 0 \rightarrow \alpha_e = 0 \]

 \[\sigma_{sp} = \frac{P_0}{b_w e_0} \cdot \frac{0.07}{1 + \left(\frac{l_{pt}}{e_0} \right)^{1.5}} \cdot 0.1 \]

- Section modulus: Bottom fibre or top fibre?

 \[W_b = \frac{I}{e_b} \quad \text{or} \quad W_t = \frac{I}{e_t} = \frac{I}{d - e_b} \]
3. Spalling stress according EN1168

- **Section modulus**: got lost in translation?

\[
W_b = \frac{I}{e_b} \quad \& \quad W_t = \frac{I}{e_t} = \frac{I}{d - e_b}
\]

- \(\sigma_{sp}\) for upper reinforcement
- \(\sigma_{sp}\) for lower reinforcement
- (max. tensile in bottom fibre) (max. tensile in top fibre)

- **Thickness of the web** \(b_w\):
 - The minimum thickness?
 - Better to use thickness at center of gravity?
3. Spalling stress according EN1168

- \(\sigma_{sp} \leq f_{ct} \) = tensile strength at release on the basis of tests.
 - Potential vs. structural strength (overestimating of strength).
 Need for a method to measure the structural tensile strength in a simple and quick way!
 → Research topic?

- Characteristic value vs. mean value.

\[f_{ctm} = \text{mean} \]
\[f_{ctk0,05} = \text{5\% fractile} \]

- \(f_{ctm} \):
 - \(\rightarrow 50\% \text{ is smaller!} \)
 - \(\rightarrow \text{used in the evaluation of a specific case} \)

- \(f_{ctk0,05} \):
 - \(\rightarrow \text{only 5\% is smaller} \)
 - \(\rightarrow \text{used in the design of the slab} \)
3. Spalling stress according EN1168

- $\sigma_{sp} \leq f_{ct} = \text{tensile strength at release on the basis of tests.}$
 - Points of interest:
 - You don’t know how far it is until cracking, but all slabs are subjected to a test during first lifting from the production bed.
 - stresses due to lifting or suspension must be added to become a ‘safer’ situation?
 - Spalling cracks can occur shortly (1-2 days) after production, due to the short-term creep of concrete.
 - Increasing the compressive strength of the concrete at release of prestress works at ‘both sides’:
 - Higher tensile strength.
 - Higher spalling stress, due to the shorter transmission length. $\uparrow \sigma_{sp} \leq f_{ct} \uparrow$
3. Spalling stress according EN1168

- How to deal with members with $d \geq 400$ mm?
 - FEA in the past: $d < 400$ mm.
 - Is the formula valid for $d \geq 400$ mm?

In thick members the stress distribution in the sections of the anchorage zone will be ‘more’ nonlinear than in thin members.
3. Spalling stress according EN1168

- How to deal with members with $d \geq 400$ mm?
 - Scope of EN1168:
 - prEN 1168: 1997: maximum $d = 440$ mm
 \rightarrow formula of σ_{sp} validated with experimental research?
 - More and more thicker hollow core slabs are used:
 - $d = 450, 500, 800, \ldots 1000$ mm: search the limit of application of our products
 - In practice a high risk on spalling
 - Competitor of double T floor
3. Spalling stress according EN1168

- How to deal with upper reinforcement?
 - FEA in the past: only with lower reinforcement.
 - 1st way to use the formula?
 - Replace prestress force + eccentricity of the upper and lower reinforcement by one prestress force + eccentricity and then calculate σ_{sp}?

<table>
<thead>
<tr>
<th>$e_{0,1}$</th>
<th>$P_{0,1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e_{0,2}$</td>
<td>$P_{0,2}$</td>
</tr>
<tr>
<td>$e_{0,3}$</td>
<td>$P_{0,3}$</td>
</tr>
</tbody>
</table>

Statically equivalent systems, but different σ_{sp} because local effects are different (principle of Saint-Venant).
3. Spalling stress according EN1168

- How to deal with upper reinforcement?
 - 1st way to use the formula?
 - What in case of 2 symmetric forces (e.g. wall elements)?

Statically equivalent systems, but different \(\sigma_{sp} \) because local effects are different.

EN1168 \(\rightarrow e_{0,3} = 0 \rightarrow \sigma_{sp} = \#DIV/0! \)
3. Spalling stress according EN1168

- How to deal with upper reinforcement?
 - 2nd way to use the formula?
 - Calculate σ_{sp} lower reinforcement $\rightarrow \sigma_{sp, \text{lower}}$
 - Calculate σ_{sp} upper reinforcement $\rightarrow \sigma_{sp, \text{upper}}$

$\sigma_{sp, \text{lower}}$ and $\sigma_{sp, \text{upper}}$ are located at different heights.

$\sigma_{sp, \text{lower}} + \sigma_{sp, \text{upper}}$ is not correct.
How to deal with upper reinforcement?

- 3th way to use the formula?
 - Just ignore σ_{sp} of the upper reinforcement.
 - probably done the most, but the negative effect is ignored!

- Positive impact of the upper reinforcement in case of thin slabs? Negative impact in case of thick slabs?
 - What’s a thin or a thick slab in this sense?

- Upper reinforcement in hollow core slabs is used:
 - In some seismic areas (e.g. New Zealand)
 - When handling is a problem
 - In wall panels (d is rather limited; +/- 200 mm)
4. Conclusion
4. Conclusion

- For $d < 400$ mm and without upper reinforcement the formula of EN1168 works fine.

- Further research is needed to find a more ‘correct/reliable’ method for calculating the maximum spalling stress in hollow core slabs with $d \geq 400$ mm and/or upper reinforcement.

On behalf of ECHO, a theoretical study was started by two students of Xios Hogeschool Limburg in Hasselt, Belgium:

- Building of a finite element model for slabs with and without upper reinforcement;
- Formulate a truss analogy (strut-and-tie model);
- Work out a generally valid formula ($d < 400$ mm and $d \geq 400$ mm).
4. Conclusion

- Ideal would be to perform an experimental research to validate the results of the theoretical study:
 - Very expensive!
 - Share practical experience of manufacturers → ‘sharepoint’ on the internet in the future?

- The design regarding spalling should be always a ‘bottom up design’ = some slabs that fails in the model, will satisfy in practice.

- Products evolve, standards should do too!
Thank you for your attention!

Questions?

bart.hendrikx@echobel.com