

Hollow core floor systems: increasing performances with composite action

S. Bernardi

CERIB

Study and Research Centre for the French Concrete Industry

Precast prestressed hollow core floors

World annual production ≈ 200 millions m²

2 millions m² in France

Principally used for:

- offices buildings
- commercial and industrial buildings
- parkings

Precast prestressed hollow core floors

Hollow core slabs produced in France:

□ 12 cm ≤ thickness ≤ 40 cm
□ 60% extruded / 40% slipformed
□ 95% with protruding tendons

Composite action

Stresses state in the web

 σ_1 is due to the effective prestressing force

 τ_1 is due to the vertical shear force

 τ_2 is due to the shear flow in the transversal direction

 τ_3 is due to the shear flow in the longitudinal direction

Research in CERIB

Aims

First to elaborate an analytical model for designing beams when hollow core slabs behave as compressive flange (rigid supports) Secondly to identify the configurations where the flexibility of the support shall be considered (flexible supports)

6

numerical modelling
 full scale tests

Description of the floors tested

Hollow core slabs:

- thickness= 26,5 cm / length= 8,00 m
- strands: 10 T12,5 (protruding length = 10 cm)
- concrete class C60/75

Middle beam for 1st test:

- prestressed concrete beam
- section = $40 \times 40 \text{ cm}$
- <u>- length= 4,50 m</u>
- strands: 10 T15,2 (σ_{p0} = 1517 MPa) steel grade 240
- passive: $5 \Phi 12$
- concrete class C50/60

IPHA Workshop – 7 & 8 November 2005 – Delft

Middle beam for 2_{nd} test:

- metallic beam
- I profile (height = 17,5 cm)
- length = 4,50 m

Testing device

Measurement

Inductive transducers for:

- vertical displacement of slabs and beam
- differential horizontal displacement between the slabs and the middle beam
- crack width in the vertical joint concrete between the slabs and the middle beam
- warping of the webs of hollow core slabs

Strain gauges for:

- tensile strain of the beam at mid-span
- principal strains in the webs -

Numerical study

Finite elements model (Castem 2000)

- 3D analysis with cubic elements for modelling slabs, beams and joints and bar elements for reinforcement
- elastic behaviour for concrete (slabs and beam) and steel
- isotropic damage law for the interfaces and joints

Failure load

Test n° 1

Test n° 2

no longitudinal cracking along the strands

IPHA Workshop – 7 & 8 November 2005 – Delft

 $\mathbf{K} =$

bending moment applied to the beam

$$M_p = M_{ext} (1 - K)$$

reduction coefficient due to composite action

 $M_{D}(x) = M_{p}(x) \frac{E_{D} I_{D}}{E_{p} I_{p}} \frac{1}{(1 - v^{2})}$ transverse bending moment applied to the slabs

17

 $\begin{array}{l} \mathsf{A}_{\mathsf{p}}: \mbox{cross section of the beam (precast beam + in-situ concrete} \\ \mathsf{A}_{\mathsf{T}}: \mbox{cross section of the compressive flange} \\ \mathsf{I}_{\mathsf{p}} \ / \ \mathsf{I}_{\mathsf{D}}: \mbox{second moment of area of the beam / of the hollow core slab} \\ \mathsf{E}_{\mathsf{p}} \ / \ \mathsf{E}_{\mathsf{T}} \ / \ \mathsf{E}_{\mathsf{D}}: \ \mbox{modulus of elasticity of concrete of the beam / of the flange} \\ \ / \ \mbox{of the hollow core slab} \end{array}$

Analytical model

v_{sd}

b_w b_{eff}

N_{sd}

 τ_2

 $\tau_3 =$

 shear stress due to the shear flow in the transversal direction:

shear stress due to the shear flow in the longitudinal direction:

	Design shear stresses	
	test No.1	test No.2
τ ₂	1,38 MPa	3,28 MPa
τ ₃	1,52 MPa	3,60 MPa

Finnish rules Code Card 18

Vsd

W_{ext}

0,8 d

test No.1	test No.2
1,39 MPa	2,85 MPa

(applied load = 300 kN / γ_{G} = 1,35 ; γ_{Q} = 1,5)

✓ The influence of the rigidity of the support on the mechanical behaviour of the floor system has been highlighted.

✓ The outcome with the model is good with respect to the available experimental results.

The design method will be incorporated into a new French standard for erection and design of hollow core floor systems.

Thank you for your attention

Questions ?

IPHA Workshop – 7 & 8 November 2005 – Delft