IPHA TECHNICAL SEMINAR 2017

October 25-26. Tallinn, Estonia

Shear and torsion

Björn Engström

Chalmers University of Technology | Sweden

Reasons for torsion

Trimmer beam at large opening

Response to torsion

Rectangular hollow section

Rectangular solid section

Torsion results in shear stresses in outer part of solid section or in actual thin walls of hollow section

Shear flow – torsional shear stress

Shear flow *q* (force per unit length) assumed to be constant

 $q = \tau \cdot t$

Torsional shear stress

$$\tau = \frac{T}{2A_t \cdot t} = \frac{T}{W_t}$$

Torsion modulus of section

$$W_t = 2A_t \cdot t$$

$$T = q_1 \cdot h_t \cdot \frac{b_t}{2} + q_2 \cdot b_t \cdot \frac{h_t}{2} + q_3 \cdot h_t \cdot \frac{b_t}{2} + q_4 \cdot b_t \cdot \frac{h_t}{2} = q[2b_t \cdot h_t] = q \cdot 2A_t$$

Torsional shear stress

- Rectangular solid section
 - The shear stress is largest at the outside of the section at the midpoint of the wider side
- Thin walled section
 - The shear flow is constant and the shear stress is largest in the thinner wall

Interaction vertical shear and torsion

Eccentric load results in both vertical shear and torsion

Cracking due to shear and torsion

Web shear tension crack

Torsional crack

Reinforced concrete beam

- Uncracked stage
 - Torsional stiffness in uncracked stage
- Torsional cracking
- Cracked stage
 - Torsional stiffness in cracked stage
- Torsional resistance

- After inclined cracking the torsional shear is carried by transverse components of inclined compression.
- The inclined compressive struts need to be balanced by transverse and longitudinal steel reinforcement.
- Torsional failure due to crushing of struts or yielding of all steel

Hollow core slab

- Uncracked stage
 - Torsional stiffness in uncracked stage
- Torsional cracking = torsional resistance

- Since transverse and some longitudinal reinforcement is missing, it is not possible to achieve a state of equilibrium in the cracked stage
- Skew cracking in top flange or web means that the torsional resistance is reached

Torsional deformation and stiffness

• Twist per unit length

$$\frac{d\varphi}{dx} = \frac{T}{C}$$

• Torsional rigidity (uncracked)

$$C = GK_T$$

$$G = \frac{E}{2(1+\nu)}$$
 (shear modulus)

 K_T (cross-sectional factor)

Cross-sectional factor

• Solid rectangular section b > h

$$K_{\rm T} = \frac{bh^3}{12} \left(1 - 0.63 \frac{h}{b} \right)$$

• Thin walled rectangular section

Hollow core section

Transformation to equivalent thin walled rectangular section

Cross-sectional factor

$$A_{t} = (b_{id} - b_{w,out}) \cdot (h - 0,5(h_{t,top} + h_{t,bottom}))$$

$$\sum \frac{u_i}{t_i} = \frac{b_{id} - b_{w,out}}{h_{t,top}} + \frac{b_{id} - b_{w,out}}{h_{t,bottom}} + \frac{2(h - 0.5(h_{t,top} + h_{t,bottom}))}{b_{w,out}}$$

,

Cracking due to torsion

- Load case:
 - Normal stress due to prestress and bending moment (eccentricity of prestress and load)
 - Shear stress due to vertical shear (load) and torsion
- Different conditions in webs and flanges
- Crack occurs when the principal stress reaches the concrete tensile stress

Principal tensile stress in flange

$$\sigma_{\rm I} = \frac{\sigma_{ct}}{2} + \sqrt{\left(\frac{\sigma_{ct}}{2}\right)^2 + \tau_T}$$

Normal stress due to prestress and bending moment:

$$\sigma_{ct} = \frac{-P(x)}{A_c} + \frac{-P(x) \cdot e + M(x)}{I_c} \cdot (-x_c)$$

Torsional crack in top flange

$$f_{ctd} = \frac{\sigma_{ct}}{2} + \sqrt{\left(\frac{\sigma_{ct}}{2}\right)^2 + \tau_T}$$

- Calculate normal stress in top flange σ_{ct}
- Assume that the principal stress equals the concrete tensile stress
- Solve the torsional shear stress that creates a skew crack in the top flange

$$\tau_{T,top} = f_{ctd} \sqrt{1 - \frac{\sigma_{ct}}{f_{ctd}}}$$

• Torsional moment that results in the crack

$$T_{cr,top} = W_{T,top} \cdot \tau_{T,top} = W_{T,top} \cdot f_{ctd} \sqrt{1 - \frac{\sigma_{ct,top}}{f_{ctd}}}$$

Torsional modulus of section W_t

For section with constant wall thickness

$$\tau = \frac{T}{2A_t \cdot t} = \frac{T}{W_t} \qquad W_t = 2A_t \cdot t \qquad A_t = b_t \cdot h_t = (b-t) \cdot (h-t)$$

For hollow core section – different wall thicknesses

$$A_{t} = \left(b_{id} - b_{w,out}\right) \cdot \left(h - 0,5(h_{t,top} + h_{t,bottom})\right)$$

 $W_{T,top} = W_T(t_{top})$ $W_{T,web} = W_T(b_{w,out})$ $W_{T,bottom} = W_T(t_{bottom})$

Different values depending on actual wall thickness

Principal tensile stress in web

$$\sigma_{\mathrm{I,web}} = \frac{\sigma_c}{2} + \sqrt{\left(\frac{\sigma_c}{2}\right)^2 + \left(\tau_T + \tau_V\right)}$$

Shear stress due to vertical shear:

$$\tau_{V} = \frac{1}{b_{w}} \left[\left(\frac{A_{cp}}{A_{c}} - \frac{S_{cp} \cdot e}{I_{c}} \right) \frac{dP}{dx} + \frac{S_{cp}}{I_{c}} \cdot V(x) \right] \text{ (inside transfer length)}$$

$$\tau_{V} = \frac{S_{cp} \cdot V(x)}{I_{c} \cdot b_{w}}$$

(outside transfer length)

Shear and torsion interaction

- Traditional design approach
 - Stresses from vertical shear and torsion are superimposed
 - The maximum principal stress creates a crack which causes failure
 - One point in web considered
 - Linear interaction assumed
- Holcotors
 - Non-linear analysis
 - Favourable stress redistribution in cracking concrete and influence of restraint from boundaries

Increase with up to 55 % for 200 mm units and up to 30% for 400 mm units

Shear and torsion in hollow core slabs Holcotors

Financiers and collaboration partners

- European Commission
- International Prestressed Hollow Core Association
- Bundesverband Spannbeton-Hohlplatten

- Castelo
- Consolis
- Echo
- A. Van Acker

- Strängbetong
- VTT
- Chalmers

Holcotors

Helén Broo Ph.D. Student Chalmers

Karin Lundgren Ass. Professor Chalmers

Björn Engström Professor Chalmers

Matti Pajari D.Sc. (tech.) VTT

Project started January 1, 2002 and ended December 31, 2004

Aim of project

- To use the capacity of hollow core slabs better
- To develop methods to design for combined shear and torsion in hollow core slabs
 - Single units
 - Whole floors

Holcotors, 2002 – 2004

Tests on hollow core units

FE-model of hollow core unit

26

Comparison of results

- Maximum load
- Load versus deflection
- Failure mode
- Crack pattern

Comparison of results

T200E1

Comparison of results

Effect of neoprene bearing

Critical section for shear tension crack in 400 mm units

Analytical model

FE-analysis, pure shear

Conclusions

- FE-analyses are able to capture the overall behaviour in tests
 - Failure mode
 - Maximum load
 - Crack pattern
 - Vertical deflection (until first crack)
- Large difference in capacity due to support condition

FE-analyses for V-T interaction

Shear torsion interaction 400 mm

Shear torsion interaction 400 mm

Shear tension interaction 200 mm

Failure modes

- Torsion dominates
 - Diagonal crack in top flange
- Vertical shear dominates
 - Web shear crack in most loaded web and bending crack
- Intermediate situations
 - Mixed mode

FE-model of hollow core floor

Integrated model for complete floor

Design of hollow core slabs

Test on complete floor

Design of floor – level III and II

Simulation of floor test – level I

Floor design, example

Conclusions

- Modelling levels for hollow core slabs were developed
 - Hollow core floor \Rightarrow Sectional forces *M*, *V*, *T*
 - Reduced torsional moment
 - Arbitrary geometry and loading
 - Hollow core unit \Rightarrow Shear-torsion capacity
 - Higher resistance
- The capacity of hollow core units can be used better

Development of level IV method

Simplified interaction diagram

Transverse distribution of load effects

Forces on the loaded element

concentrated force and distributed shear along the edges

Forces on the adjacent element

distributed shear along one edge downwards, and upwards shear at the other edge - means torsion

Load distribution factors

Note! It is not the load that is distributed, but the load effect. Different factors for bending moment, shear and torsion.

Distribution of shear, bending moment and torsion

Distribution of maximum moment and maximum shear

