

HOLCOFIRE

Behaviour of prestressed hollowcore floors exposed to fire

Database with 162 fire test results

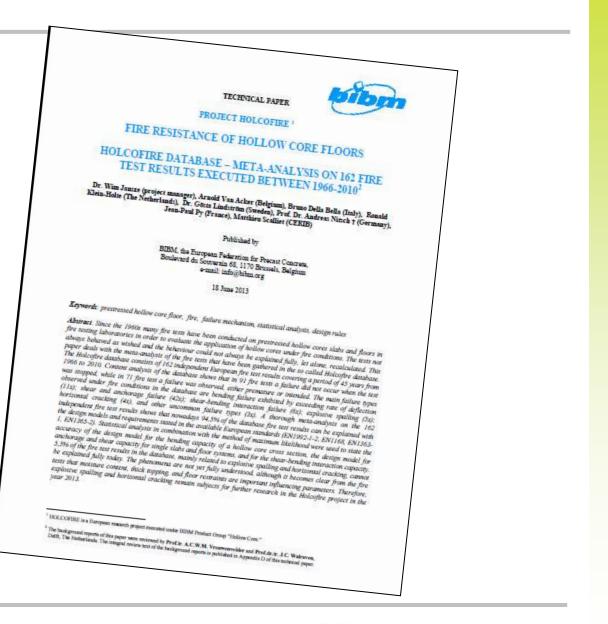
Wim Jansze

IPHA Technical Seminar 2013 in close co-operation with BIBM hosted by Cerib 30-31 October 2013

Content

- Introduction
- Holcofire Database explained
- Failure types
 - Bending
 - Shear
 - Shear-bending interaction
 - Spalling
 - Horizontal cracking
 - Other failure types
- Conclusions

Objective of database study


- Not only perform new fire tests, but also learn from fire tests conducted in past
- Collect as many fire tests as possible ("Europe") and perform a meta-analysis
- Meta-analysis is defined as "a systematic method of evaluating statistical data based on results of several independent studies on the same problem. A meta-analysis produces a stronger conclusion than can be provided by any individual study."

Holcofire database study

• Technical paper published 18 June 2013

Rough overview of database

162 single analyzable fire tests have been collected executed between 1966 and 2010 (45 years):

- Finnish studies performed by VTT PAL between 1971 and 1991;
- Belgium studies by CBR, FEBE and RUG between 1971 and 1999;
- French CTICM and Swiss ETH/EMPA studies on slim floor structures between 1992 and 1996;
- IBS studies between 1983 and 1996 in Germany;
- Dutch TNO studies between 1999 and 2001;
- Danish studies by DIFT, SPTRI and BRE between 1999 and 2005;
- Eastern European studies (ITB, ZAG, CVUT) between 2001 and 2008;
- Building structure study in UK in 2007
- Peikko tests in 2009 on steel beams
- Dutch Efectis tests on Rotterdam fire in 2010

Fire tests on hollow cores

Fig 1. VTT-PAL 2892-71 [1971]

Fig 2. RUG 9157 [1999]

Fig 3. TNO R-HVP260S11 [2001]

Fire tests on hollow cores

Fig 4. SPTRI P502015 [2005]

SPTRI Peikko [2009] Fig 5.

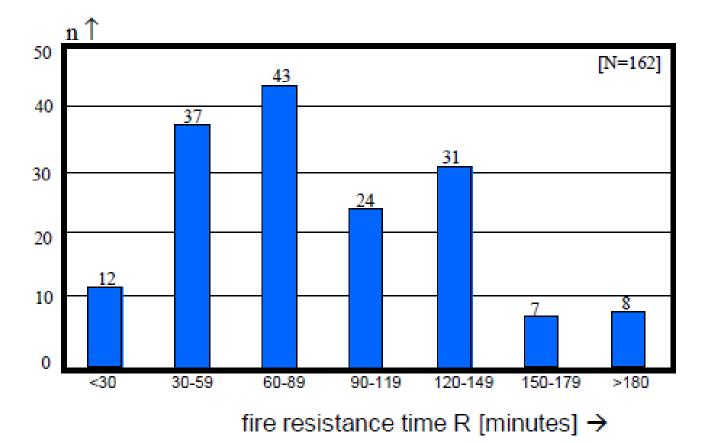
Fig 6. BRE test 1 [2007]

7/49

20 fire test laboratories

BRE	Building Research Establishment	Middlesborough	United Kingdom
CBR	CBR Ergon laboratory	Lier	Belgium
CSI	CSI Gruppo IMQ	Milan	Italy
	Centre Technique Industriel de la Construction	Mezieres-les-	-
CTICM	Metallique	Metz	France
CVUT	Technical University in Prague	Mokrsko	Czech republic
DIFT	Danish Institute for Fire Technology	Hvidovre	Denmark
EFNL	Efectis Nederland	Delft	Netherlands
FROSI	Fire Research Organisation Special Investigation Institut für Brandschutztechnik und	Unknown	United Kingdom
IBS	Sicherheitsforschung	Linz	Austria
	Instituto Giordano - Laboratorio di Recherche di fiscica		
IG	tecnica	Bellaria	Italy
ITB	Building Research Laboratory	Katowice	Poland
	Eidg. Materialprüfungs- und Versuchsanstalt für		
EMPA	Industrie, Bauwesen und Gewerbe (ETH Zurich)	Dubendorf	Switserland
SPTRI	SP Technical Research Institute of Sweden	Borås	Sweden
RIFS	Ministry for Emergency Situations	Minsk	Belarus
RUG	Rijksuniversiteit Gent	Gent	Belgium
TNO	Toegepast natuurwetenschappelijk onderzoek	Delft	Netherlands
TUB	Technische Universitat Braunschweig	Braunschweig	Germany
UP	University of Perugia		Italy
VTT PAL	Valtion Teknillinen Tutkimuskeskus - Palotekniikan laboratorio	Helsinki	Finland
ZAG	ZAG fire laboratory	Ljubljana	Slovenia

Database in MS Word reporting style

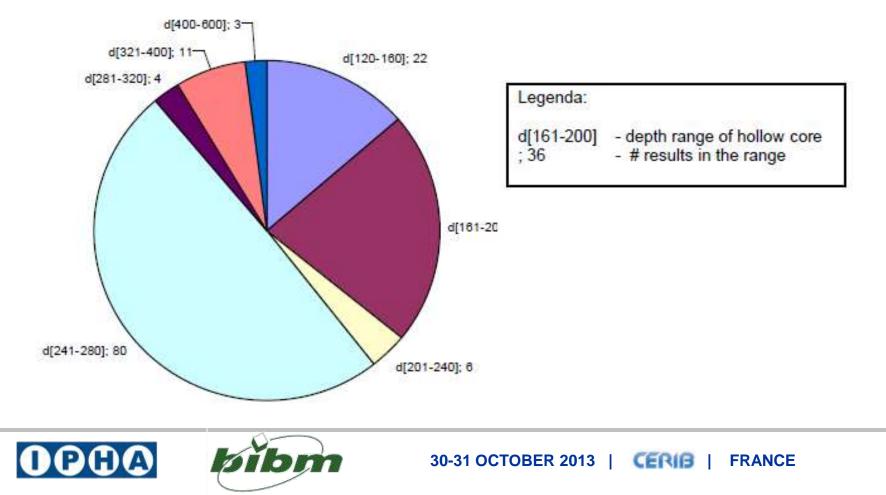

Fire resistance of hollow core for the fire resistance of hollow core for the fire test results executed 1966-2010

Holcofire fire test #	Fire test name	testyear	Fire curve	Slab depth [mm]	top ping [mm]	slab width [mm]	total web width [mm]	Total area of strand [mm2/slab]	AXIS distance	length of test set up, [m]	width of test set-up [m]	no of slabs	test set-up	EN13 65-2	time [min]	Failure after fire
H26	CBR 78/85 SPG 27/6 (protected)	1978	ISO 834	265	0	1,2	233	312	40	1.8	1	1	HCS	0	173	R-NO
H27	VTT PAL 9498	1979	ISO 834	150	0	1200	231	208	35	6	2.4	2	SYS	1	50	R-NO
H28	VTT PAL 0795	1980	ISO 834	290	0	1200	260	372	80	6	2,4	2	SYS	1	190	DF
H29	RUG 3681	1980	ISO 834	152	30	595	175	248	39	6	1.8	3	FLR	0	76	R-DF
H30	RUG 3682	1980	ISO 834	200	30	595	266	118	33	6	1,8	3	FLR	0	126	R-DF
H31	VTT PAL 1146b	1980	ISO 834	265	0				45	6	2,4	2	SYS	1	88	R-NO
H32	VTT PAL 1191	1980	ISO 834	265	0			0	45	6	2,4	2	SYS	1	112	R-NO
H33	VTT PAL 1350	1980	ISO 834	265	0			0	45	6	2,4	2	SYS	1	78	R-NO
H34	VTT PAL 1038a	1980	ISO 834	265	0	1200	232	279	55	6	2,4	2	SYS	1	105	R-DF
H35	VTT PAL 1038b	1980	ISO 834	150	0	1200	231	208	33	6	2,4	2	SYS	1	45	R-NO
H36	VTT PAL 1038c (protected)	1980	ISO 834	150	0	1200	231	208	33	6	2,4	2	SYS	1	262	R-NO
H37	VTT PAL 1275a	1980	ISO 834	265	0	1200	232	279	65	6	2,4	2	SYS	1	105,5	R-NO
H38	VTT PAL 2358	1982	ISO 834	150	0	1200	208	364	38	5,9	2,4	2	SYS	1	64	R-DF
H39	VTT PAL 2480	1982	ISO 834	275	0	1200	243	558	65	4	2,4	2	SYS	1	63	SA
H40	VTT PAL 2481	1982	ISO 834	215	0	1200	241	651	38	5,9	2,4	2	SYS	1	78	R-NO
H41	RUG 4514	1982	ISO 834	265	50	1200	287	520	61	5,45	1,2	1	HCS	0	150	R-NO
H42	TUB IBMB 82 1424/I-IV	1982	ISO 834	140	0	497	204	174	35	4,75	2	4	SYS	1	47	R-DF
H43	TUB IBMB 82 1424/V-VI	1982	ISO 834	160	0	497	254	145	35	4,75	2	4	SYS	1	95	R-NO
H44	IBS 2311	1983	ISO 834	160	0	1200	462	520	35	4,1	2	2	SYS	1	90	R-NO
H45	VTT PAL 4248	1984	ISO 834	265	0	2400	465	744	64	5,185	2,4	1	SYS	1	49	SA
H46	VTT PAL 4337	1984	ISO 834	265	0	1200	233	312	33	5,185	2,4	2	SYS	1	62	R-NO
H47	VTT PAL 4448	1984	ISO 834	160	0	1200	276	208	37	5,185	2,4	2	SYS	1	36	DF
H48	VTT PAL 4450	1984	ISO 834	265	0	1200	233	312	61	5,185	2,4	2	SYS	1	130	SA
H49	VTT PAL 4451	1984	ISO 834	275	0	1200	227	372	91	5,185	2,4	2	SYS	1	30	DF
H50	VTT PAL 4452	1984	ISO 834	265	0	1200	225	930	33	5,185	2,4	2	SYS	1	135	R-NO

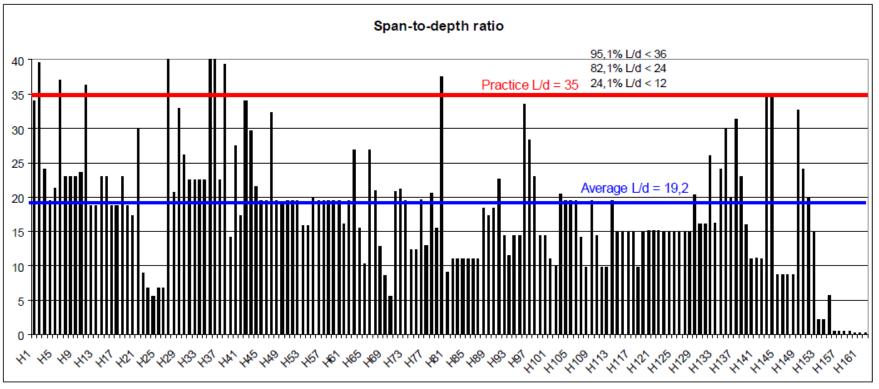
3/49

Some database figures

• Fire resistance time reached in fire tests (N=162)

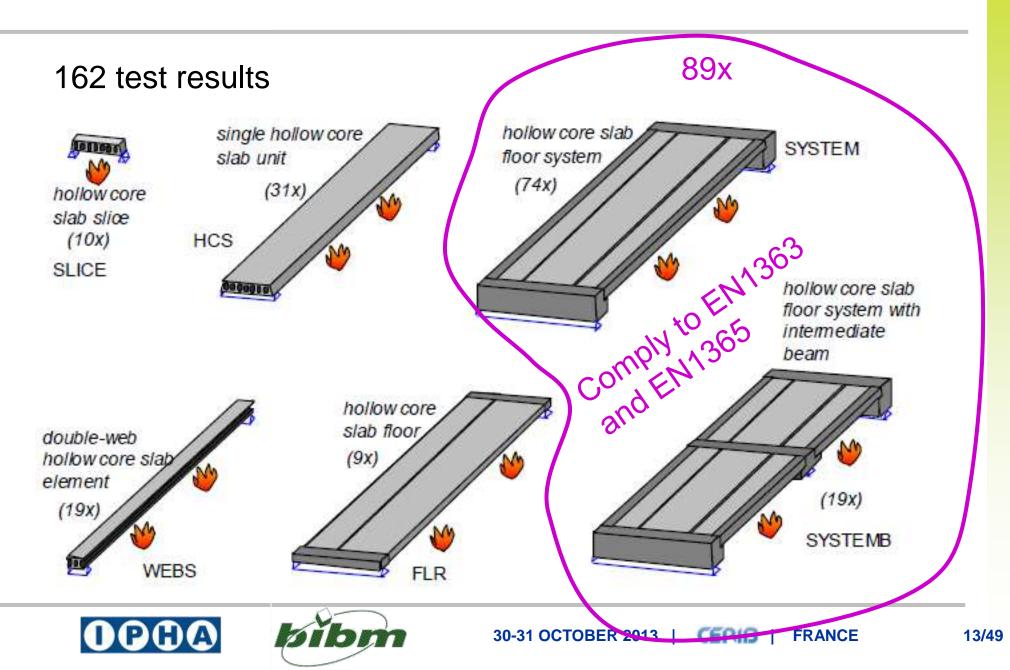


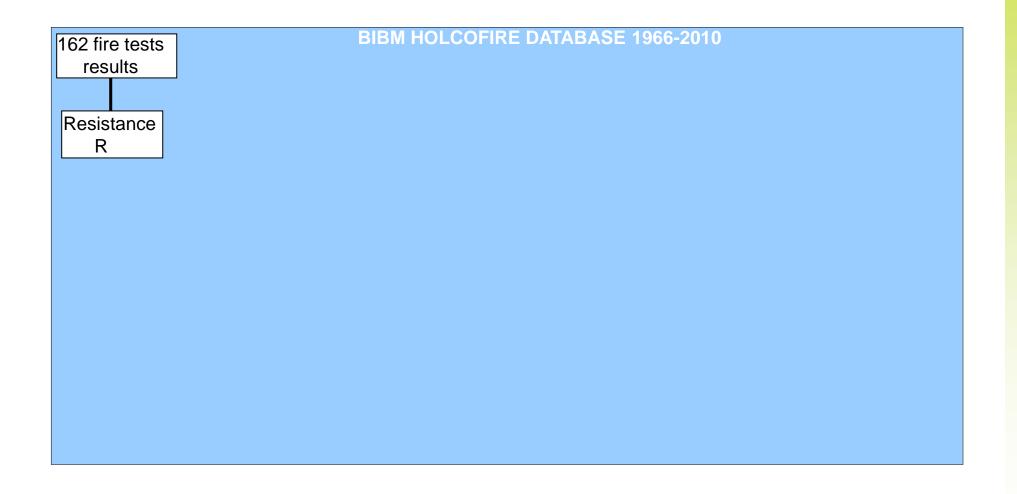
Some database figures

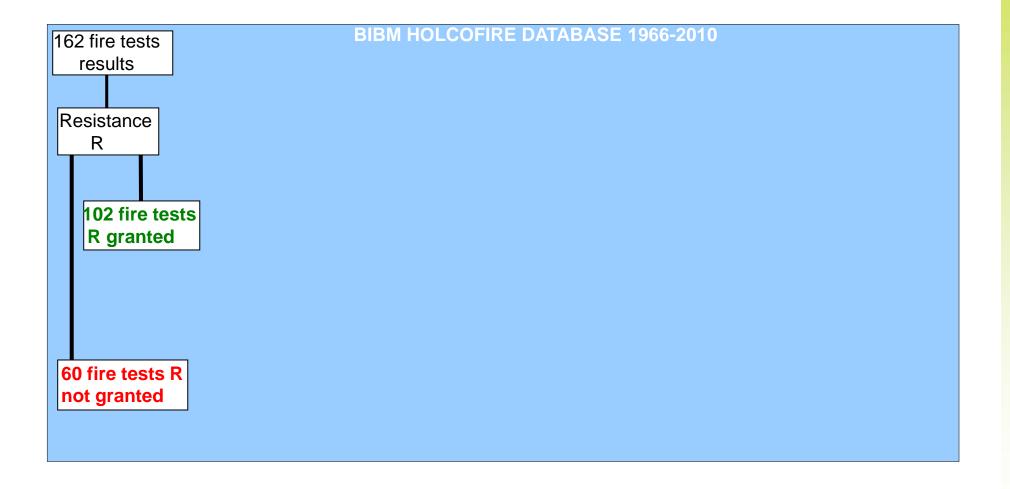

 Depths [mm] of hollow cores used in fire tests (N=162)

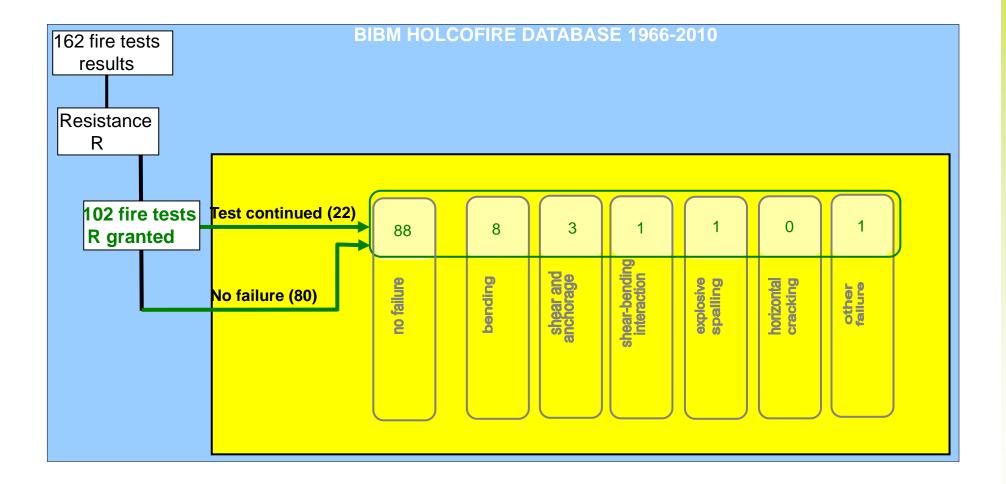
11/49

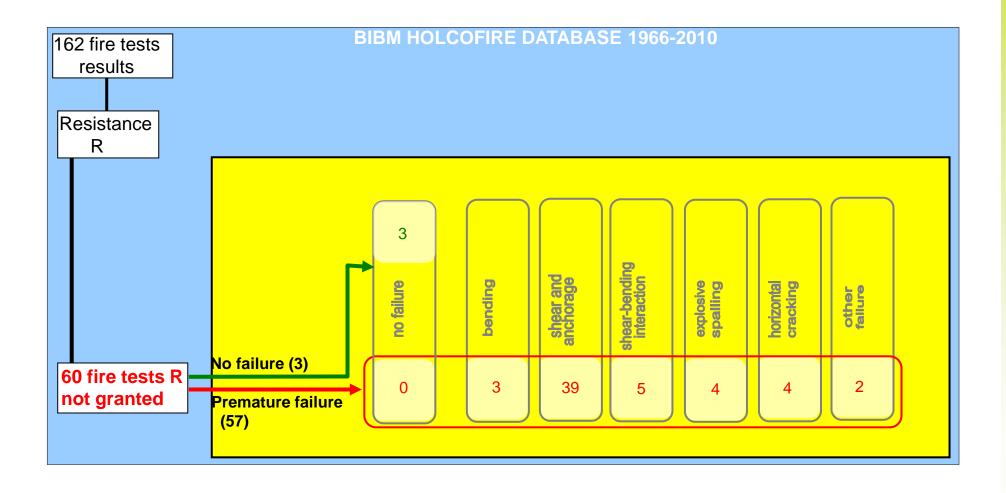
Some database figures


- The ideal span-to-depth ratio in practice is 35
- The average span-to-depth ratio in fire tests is 19,2
- Furnaces available 4m x 6m

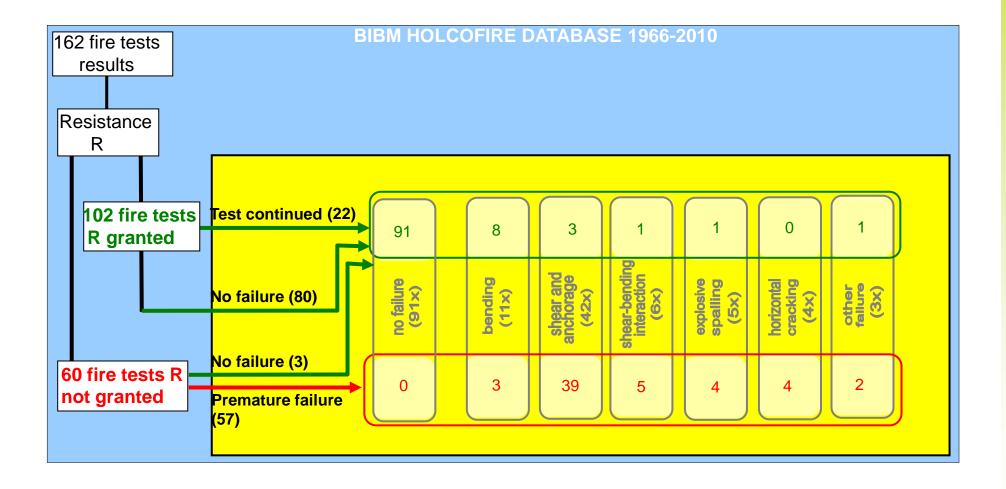


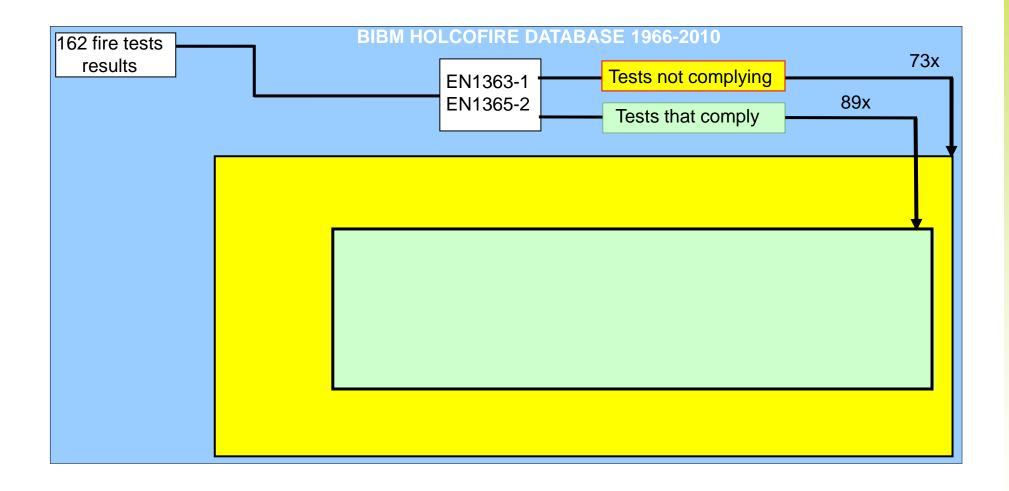

Geometry of test set-ups

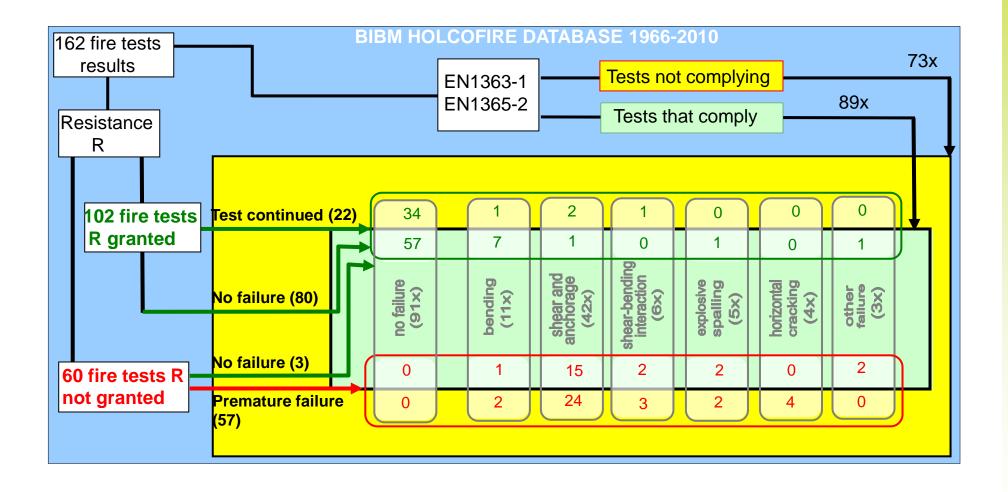




FRANCE







Holcofire database

Evaluation of database

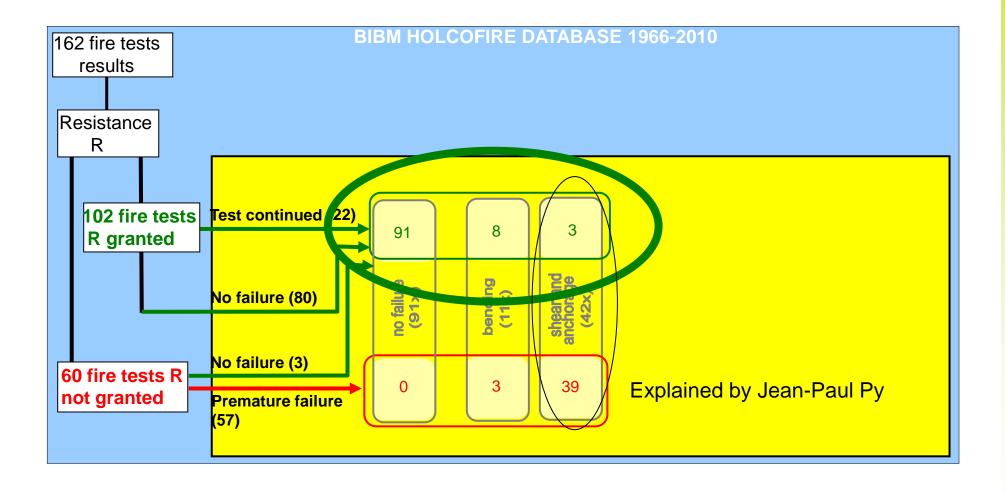
 Database study is reviewed in February-May 2013 by Prof. Ton Vrouwenvelder and Prof. Joost Walraven, The Netherlands

Review of Holcofire Report on Behaviour of prestressed hollowcore floors exposed to fire Evaluation of the	FROJECT HOLCOFIRE
Evaluation of 162 fire test results Review by Prof.ir. A.C.W.M. Vrouwenvelder and Prof.dr.ir. J.C. Walraven	HOLCOFIRE DATABASE - META-ANALYSIS ON 162 FIRE TEST RESULTS EXECUTED BETWEEN 1966-2010 ² Dr. Wim Janze (project manager). Arnoid Van Acher (Belgium), Brueo Della Bella (Indy). Ronald Jean-Paul Py (France), Marthur Scallare (CERIB)
FINAL	Published by BIEM. do European Federation for Protosit Concress, Boulerned da Scourpain 68, 1170 Brunslei, Belgium #unit, inderfehem.org 18 June 2013
Date: 5 June 2013 Client: BIBM HOLCOFIRE NS DV.I. W. Janze MBA Bd. Du Souverain 58 B-1170 Brussely Belgium	Express: Since the 1960 and the core flows and the second balance core flo
Authon: Prof. ir. A.C.W.M. Urbuwernwelder Prof. dr. ir. J. C. Walszven Consulted experts: Prof. st. H. Mordijk (TU-Derb, Bureau Hageman) ir. C. Both (Promat)	¹ Biological and Section (Section 1997), and Section (Section 1997), and Section 1997), and Section 1997, and Secti
	 an open is pakied is Appendix D of this scherical paper.

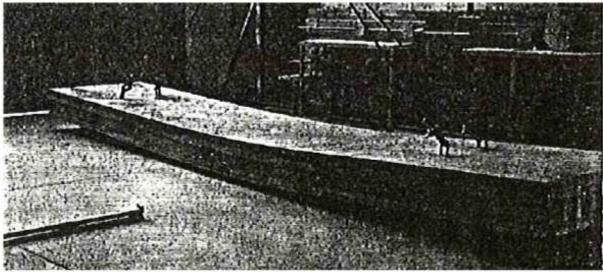
Reviewers

- "The reviewers would like to emphasize that they consider the work done to be a very good initiative and a valuable contribution to the assessment of structural safety of floors assembled with hollowcore slabs subjected to fire".
- "The large number of tests from various origins, with a large spectrum of parameter variations, have been classified with regard to their failure mode and have been analyzed appropriately".

Reviewers

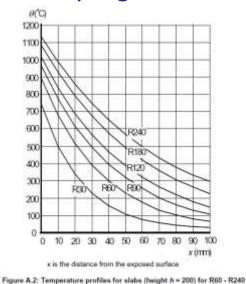

• One test or statistical approach?

- "In international fire engineering practice, however, still a more traditional way of dealing with structural safety is followed. It is a widely accepted procedure to put only one single specimen of a product to a fire test and approve it if the required time of fire duration is met without failure.
- Safety with respect to fire is achieved by specifying some safe value at the loading side (duration of the fire) in combination with the recognition that fire in itself has a low probability of occurrence.


Bending and shear+anchorage

Bending and shear+anchorage

Note that test reports many times lacked information



30-31 OCTOBER 2013 | CERIB | FRANCE

Strand temperatures

Γ....

- Relevant for design of fire tests by bending capacity
- Nowadays EN1990-1-2 is used
- Strand temepratures are given by Figure A.2

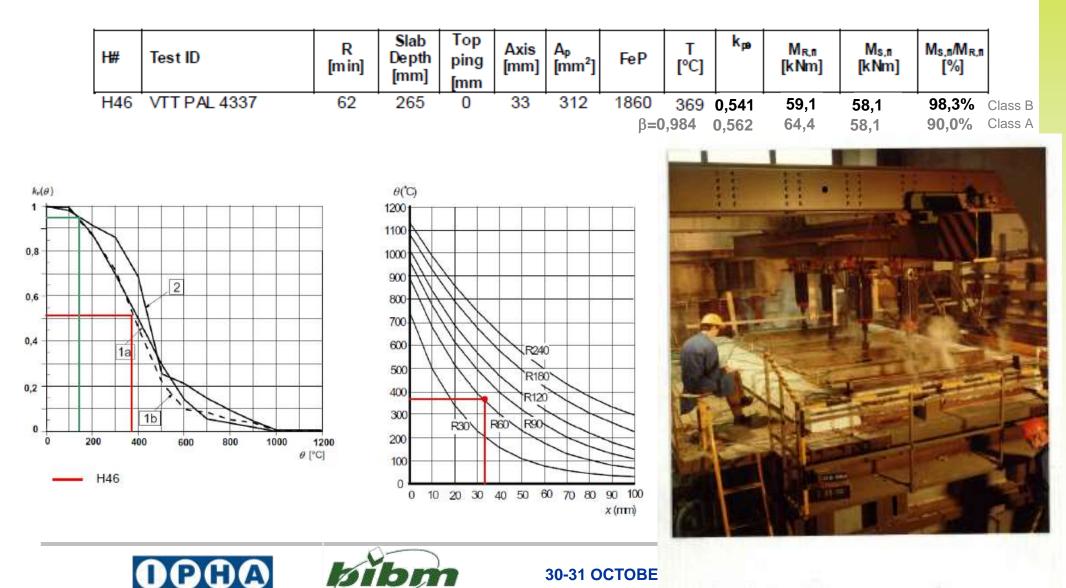
H#	Test ID	Measured T [°C]	Calculated T [°C]	distance	[min]	∆T (WC) [%]
H3	FROSI 4904	500	474	38	120	105,5%
H4	VTT PAL 1927	470	402	36	80	116,9%
H14	VTT PAL 2163/72	297	339	36	61	87,6%
H15	VTT PAL 6710/73	360	405	39	90	88,9%
H18	VTT PAL 7116-74	238	345	35	60	69,0%
H21	VTT PAL 1376/77	253	345	35	60	73,3%
H27	VTT PAL 9498	355	319	35	50	111,3%
H31	VTT PAL 1146b	360	373	45	88	96,5%
H32	VTT PAL 1191	341	371	45	112	91,9%
H33	VTT PAL 1350	309	298	45	78	103,7%
H34	VTT PAL 1038a	352	322	55	105	109,3%
H35	VTT PAL 1038b	279	295	33	45	94,6%
H36	VTT PAL 1038c (prt)	94	119	33	262	79,0%
H37	VTT PAL 1275a	297	262	65	105	113,4%
H38	VTT PAL 2358	380	372	38	64	102,2%
H40	VTT PAL 2481	446	376	38	78	118,6%
H46	VTT PAL 4337	401	369	33	62	108,7%
H50	VTT PAL 4452	542	560	33	135	96,8%
H51	VTT PAL 4453	438	354	34	60	123,7%
H56	VTT PAL 566b	399	327	37	60	122,0%
H59	VTT PAL 5308	325	384	31	61	84,6%
H62	VTT PAL 5377	442	431	34	83	102,6%
H74	VTT PAL 00360/90a	377	351	56	120	107,4%
H75	VTT PAL 00360/90b	363	351	56	120	103,4%
H76	VTT PAL 1126/91	352	420	55	157	83,8%
		-			AVG	99,8%
					CoV	14,9%

Measured

Calculated

Δxis

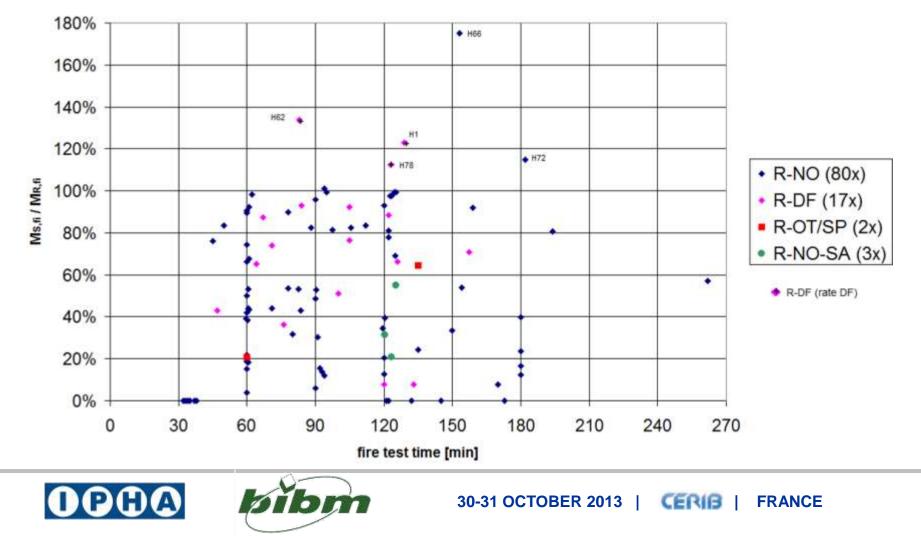
time


AT (M/C)

30-31 OCTOBER 2013 | CERIB

26/49

FRANCE


Bending capacity calculation

Kuva 4. Koeaika 60 min.

Bending moment / bending capacity fire

- In 96 tests bending moment / capacity < 100%
- Only 6 tests > 100%, but 3 of these did not fail

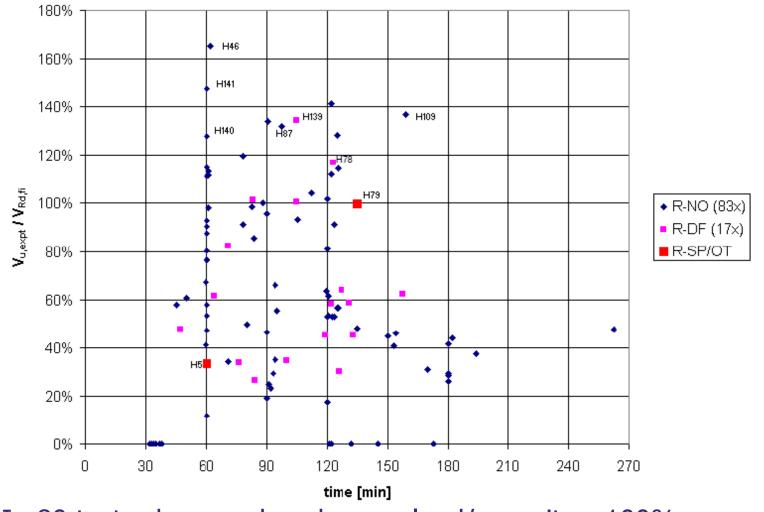
Remark regarding bending failure

Some tests were stopped when deflection reached L/30, but:

• EN1363-1 Fire tests – Failure to support the load is deemed to have occured when both of the following criteria have been exceeded for flexural loaded elements

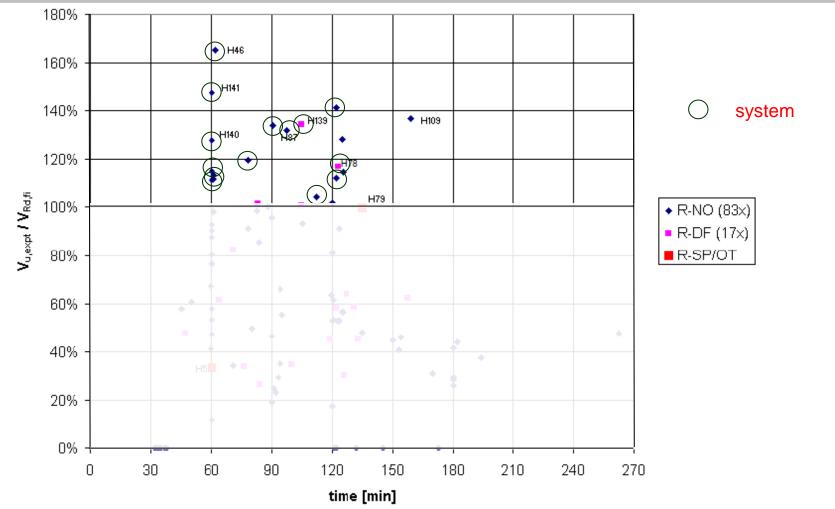
Limiting deflection	$D = \frac{L^2}{400d}$	[mm]
Limiting rate of deflection	$\frac{dD}{dt} = \frac{L^2}{9000d}$	[mm/min]

- Exceeding the deflection: in case of d = 265 mm and L = 5000 mm
 - $L^2/400d = 235 \text{ mm}$
 - L/30 = 167 mm
 - Tests were stopped too early, according to standard R not reached
- Exceeding the limit rate of deflection: means that specimens were on onset of a bending failure


Reviewers

- "In the set of 162 tests no test were indicated as having failed by exceeding the bending capacity".
- "However, in the report it is argued that a number of tests, which were stopped because of exceeding the specified limit rate of deflection, were at the onset of producing bending failures. The reviewers accept this argument".
- "It should be noted that the bending failure mode has never been subject of a serious dispute".

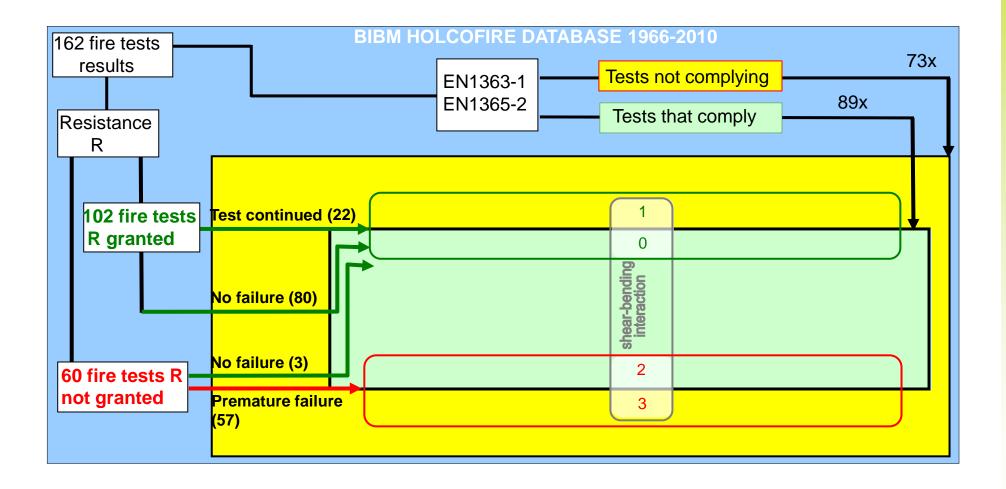
Shear load / shear capacity fire



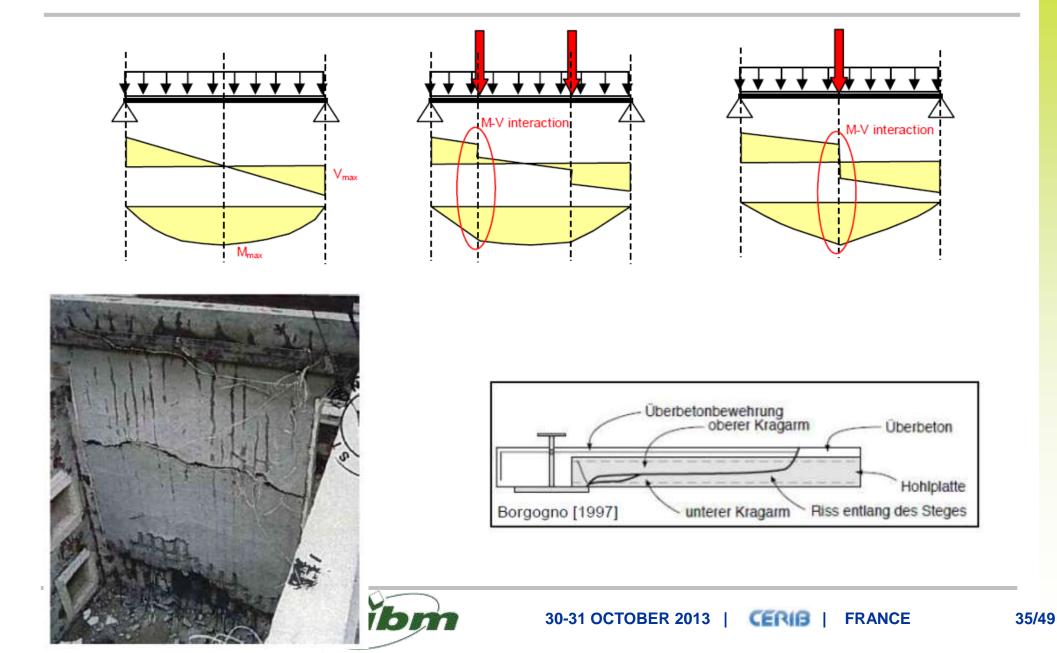
- In 80 tests shear and anchorage load/capacity <100%
- Only 22 tests > 100%, but did not fail

Shear load / shear capacity fire

• Those above 100% are mainly systems


Reviewers

- "...in a considerable number of other tests the expected shear/anchorage failure was not reached, for instance because of the fact that the test was stopped since the required time had been reached. For the case of shear/anchorage capacity 92 tests of this type were selected.".
- "It turns out that the mean ratio V_{exp}/V_{calc} is about 1.0 for single slabs and 1.29 for slabs being a part of a floor system. The coefficients of variation for V_{exp}/V_{calc} are 22 % and 24 % respectively, for single slabs and slabs being a part of a larger floor system (with restraint action at the boundaries). This seems high though acceptable".
- "Restraint effects always seem to be important, but also they are not a part of the formula".


Fire tests with shear-bending interaction (6x)

H88 - CTICM 95-E-467

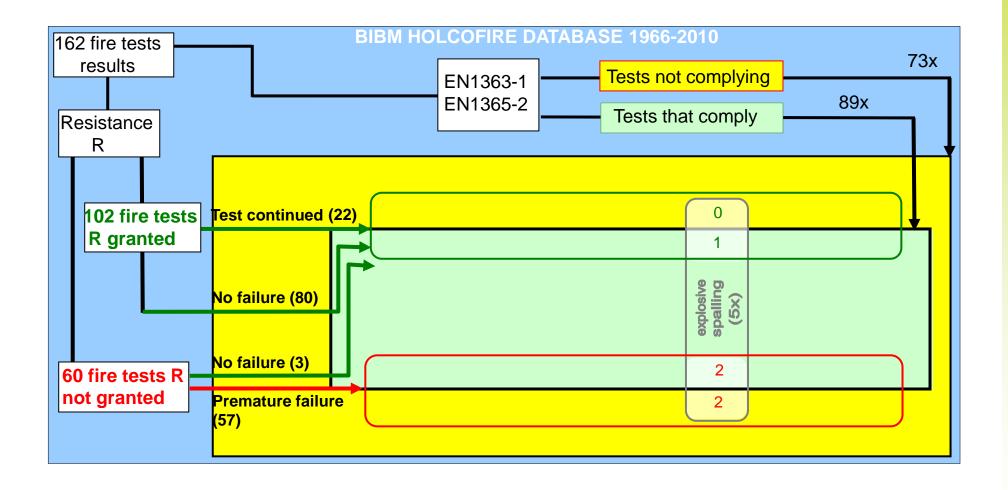
Shear-bending interaction

H20: 0.95
H80: 1.38
H88: 1.15
H90: 1,56
H91: 1,13
H113: 1.33

$$\frac{V_S}{V_{R,fi}} + \frac{M_S}{M_{R,fi}} + \frac{T_S}{T_{R,fi}} \le 1.0$$

30-31 OCTOBER 2013 | CERIB |

FRANCE


Reviewers

• "For this failure mode, which can be regarded to be in the transition range between flexural-shear and anchorage failure only 6 relevant tests could be found. Actually this requires the statistical uncertainty to be taken into account. An interaction formula is given, showing a mean value and standard deviation which are fair enough. It might be wondered if this is really needed, since the lowest bearing resistance obtained from the separate equations for bending and shear may be expected to give a reasonable design value as well".

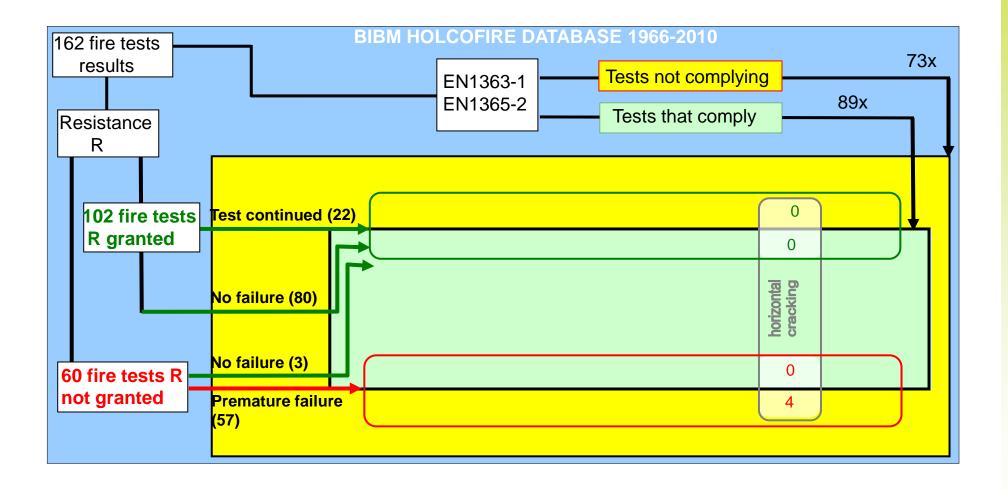
Fire tests with explosive spalling (5x)

Fire tests with spalling

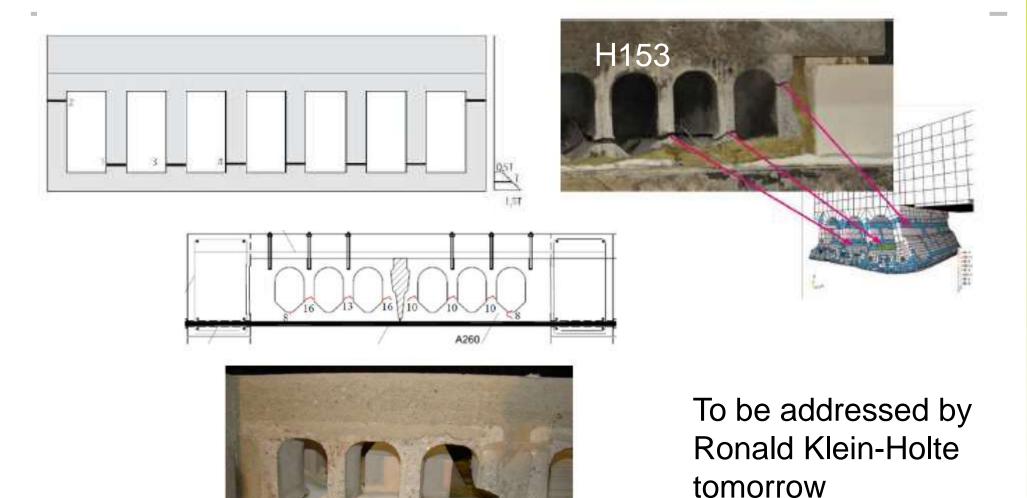
Spalling during the fire test

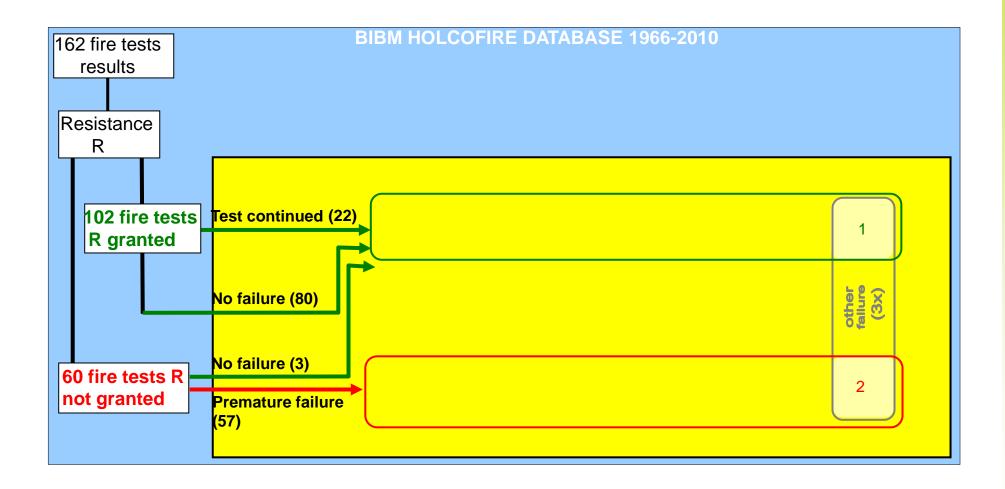
Part of hole that occured at 39 minutes

Fire tests with spalling


- Moisture content unknown or under 3%
- Mostly systems, one with LWC

e	test ID	test year	depth	Top ping [mm]	avg axis dista nce [mm]	Expoed length test set up [m]	tested width of set-up [m]	Test set-up	EN 13 65-2	R test result [min]	Failure after fire
H5	VTT PAL 2892	1971	265	0	36	5,63	2,4	SYS	1	60	R-SP
H57	VTT PAL 566c	1985	265	0	36	5,165	2,4	SYS	1	39	SP
H60	VTT PAL 5327	1985	265	0	63	5,175	2,4	SYS	1	66	SP
H103	DIFT COWI PG 10724	2000	220	80	36	6,14	2,4	SYS	0	25	SP
H136	UP HPLWC	2004	200	0	1	4	2,4	HCS	0	76	SP
•	H5: VTT PAL 2892 [1971]	-	age unk	nown days	- unknown moisture content					
•	H57: VTT PAL 566c [198		age 176	•	- 2.5 to 3.0 %						
•	H60: VTT PAL 5327 [198		age 133		- 2.8 to 2.9%						
•	H103: DIFTCOWI PG107	- age 74 days				 unknown moisture content 					
•	H136: UP HPLWC [2004	- age 817 days				 unknown moisture content 					


Fire tests with horizontal cracking (4x)


Specific Dutch tests on slices

00004

Other failure types (3x)

Other failure types

ou	test ID	test year	depth	Top ping [mm]	dista nce [mm]	Expoed length test set up [m]	tested width of set-up [m]	Test set-up	EN 13 65-2	R test result [min]	Failure after fire
H52	VTT PAL 4454	1985	265	0	64	5,185	2,4	SYS	1	43	ОТ
H79	IBS 3350/93	1993	265	0	35	4,1	2,4	SYS	1	135	R-OT
H84	EMPA B2-3	1995	200	0	30	4,7	2,4	SYSB	1	74,6	OT

H52: bond defect (15.2 mm strands used) H79: 135 min, but failure type not reported H84: punching shear

30-31 OCTOBER 2013

CERIB

Conclusions database

- The meta-analyses show very detailed insight in failure types of hollow core slabs/floors in a fire test
- The main failure types observed under fire in the database are:
 - bending failure exhibited by exceeding rate of deflection (11x);
 - shear and anchorage failure (42x);
 - shear-bending interaction failure (6x);
 - explosive spalling (5x);
 - horizontal cracking (4x),
 - and other uncommon failure types (3x).
- 94,5% of the database fire test results can be explained with the design models and requirements stated in the available European standards (EN1992-1-2, EN1168, EN1363-1, EN1365-2).

Reviewers

- "The gathering and evaluation of all test data can be considered a very valuable initiative. The reviewers consider the contents of this report as a fair description and interpretation of the authentic 162 fire test results".
- "The statistical evaluation shows that within the normal context of actual fire safety engineering bending and shear predictions by Annex G can be classified as acceptable".

Conclusions database

- 5,5% of the fire test results in the database, mainly related to explosive spalling and horizontal cracking, cannot be explained fully today (May 2013).
- The phenomena are not yet fully understood (may 2013), although it becomes clear from the fire tests that moisture content, thick topping, and floor restraints are important influencing parameters.
- Therefore, (explosive) spalling and horizontal cracking remain subjects for further research in the Holcofire project in the year 2013 → reported on tomorrow in Technical Seminar day 2

Reviewers

 "The reviewers agree with the conclusion that the collection of fire tests regarded does not give enough information on the effect of structural toppings nor effects of restraints, and that the mechanisms spalling and horizontal cracking still require further research".

Thank you for your attention

The work of Manhal Said from Consolis Technology on setting up the database and performing MathCAD Annex G calculations is highly acknowledged

