IPHA TECHNICAL SEMINAR 2017

October 25-26. Tallinn, Estonia

Flexural strength and camber

Kim S. Elliott Consultant | UK

Prestressed Concrete Hollow Core Units Flexural strength and deflections

Dr Kim S Elliott, UK IPHA Technical Seminar – Tallinn – 25-26 October 2017

Precast Concrete Structures 2nd ed.

700 pages with about 200 pages on precast floors

Figure 4.26 Development of stresses in the transmission zone l_{p12} and anchorage zone l_{pp1} of prestressed members at (1) release of tendons, (2) after all losses and (3) ultimate. (Based on BS EN 1992-1-1, Design of concrete structures – Part 1-1: General rules and rules for buildings, BSI, London, Figs. 8.16 and 8.17)

Design rules recognise the fact that the critical shear plane may occur in the prestress development zone where σ_{cp} is not fully developed. It is known that prestressing forces develop somewhere between linearly and parabolically, although BS EN 1992-1-1, Figs. 8.16 and 8.17 (combined here in Figure 4.26), adopts a linear development of stress in service and bi-linear at ultimate. Therefore, a reduced value $\alpha_1 \sigma_{cp}$ is used up to σ_{po} ,

Definitions. Introduction. Concrete and strands. Cover.

Definitions. Introduction. Concrete and strands. Cover.

Prestress. Losses. Limit f_{ctm}. Moment of resistance.

Definitions. Introduction. Concrete and strands. Cover.

Prestress. Losses. Limit f_{ctm} Moment of resistance.

Ultimate strength. Equilibrium. Compatibility. M_{Rd}.

Definitions.	
Introduction.	
Concrete	
and strands.	
Cover.	

Prestress. Losses. Limit f_{ctm} Moment of resistance.

Camber. Creep. Deflections. Limits. Ultimate strength. Equilibrium. Compatibility M_{Rd}

Compressive cylinder strength f_{ck}

Design compressive strength $f_{cd} = 0.85 f_{ck} / \gamma_c$ for example 0.85 x 45 / 1.5 = 25.5 N/mm²

EC2-1-1, Table 3.1 $f_{ctm} = 0.3 f_{ck}^{2/3}$ e.g. = 0.3 x 45^{2/3} = 3.80 N/mm²

EC2-1-1 values listed in Table 3.1

Strength classes for concrete														
f _{ck} (MPa)	12	16	20	25	30	35	40	45	50	55	60	70	80	90
f _{ck,cube} (MPa)	15	20	25	30	37	45	50	55	60	67	75	85	95	105
f _{cm} (MPa)	20	24	28	33	38	43	48	53	58	63	68	78	88	98
f _{ctm} (MPa)	1,6	1,9	2,2	2,6	2,9	3,2	3,5	3,8	4,1	4,2	4,4	4,6	4,8	5,0
f _{ctk, 0,05} (MPa)	1,1	1,3	1,5	1,8	2,0	2,2	2,5	2,7	2,9	3,0	3,1	3,2	3,4	3,5
f _{clk, 0,95} (MPa)	2,0	2,5	2,9	3,3	3,8	4,2	4,6	4,9	5,3	5,5	5,7	6,0	6,3	6,6
E _{cm} (GPa)	27	29	30	31	33	34	35	36	37	38	39	41	42	44

Mean $f_{cm} = f_{ck} + 8 N/mm^2$

EC2-1-1, clause 3.1.2.

(9) The development of tensile strength with time is strongly influenced by curing and drying conditions as well as by the dimensions of the structural members. As a first approximation it may be assumed that the tensile strength f_{ctm}(t) is equal to:

 $f_{\text{ctm}}(t) = (\beta_{\text{cc}}(t))^{\alpha} f_{\text{ctm}}$

where $\beta_{cc}(t)$ follows from Expression (3.2) and $\alpha = 1$ for t < 28 $\alpha = 2/3$ for $t \ge 28$. The values for f_{ctm} are given in Table 3.1.

(6) The compressive strength of concrete at an age t depends on the type of cement, temperature and curing conditions. For a mean temperature of 20°C and curing in accordance with EN 12390 the compressive strength of concrete at various ages $f_{cm}(t)$ may be estimated from Expressions (3.1) and (3.2).

$$f_{\rm cm}(t) = \beta_{\rm cc}(t) f_{\rm cm} \tag{3.1}$$

 $\therefore f_{ctm}(t) = f_{ctm} \times f_{cm}(t) / f_{cm}$

e.g. $f_{ctm}(t) = 3.80 \times 38 / 53 = 2.72 \text{ N/mm}^2$

(3.4)

Prestressing tendons stress v strain

Figure 3.10: Idealised and design stress-strain diagrams for prestressing steel (absolute values are shown for tensile stress and strain)

(absolute values are shown for tensile stress and strain)

Durability = nominal cover $c = c_{min,dur} + \Delta c_{dev}$

For precast slabs > C30/37, use S2

Table 4.5N: Values of minimum cover, c_{min,dur}, requirements with regard to durability for prestressing steel

Environmental Requirement for c _{min.dur} (mm)								
Structural	Exposure Class according to Table 4.1							
Class	X0	XC1	XC2/XC3	XC4	XD1/XS1	XD2 / XS2	XD3 / XS3	
S1	10	15	20	25	30	35	40	
S2	10	15	25	30	35	40	45	
S3	10	20	30	35	40	45	50	
S4	10	25	35	40	45	50	55	
S5	15	30	40	45	50	55	60	
S6	20	35	45	50	55	60	65	

Much better and recent information in BS 8500-1: 2015

Construction deviation $\Delta c_{dev} = 5$ mm if tendon positions are controlled

4.4.1.3 Allowance in design for deviation

(1)P To calculate the nominal cover, c_{nom} , an addition to the minimum cover shall be made in design to allow for the deviation (Δc_{dev}). The required minimum cover shall be increased by the absolute value of the accepted negative deviation.

Note: The value of Δc_{dev} for use in a Country may be found in its National Annex. The recommended value is 10 mm.

(3) In certain situations, the accepted deviation and hence allowance, Δc_{dev} , may be reduced.

Note: The reduction in Δc_{dev} in such circumstances for use in a Country may be found in its National Annex. The recommended values are:

 where fabrication is subjected to a quality assurance system, in which the monitoring includes measurements of the concrete cover, the allowance in design for deviation Δc_{dev} may be reduced: 10 mm ≥ Δc_{dev} ≥ 5 mm

Prestress. Losses. Limit f_{ctm} Moment of resistance.

Prestressed concrete hollow core floor units

Calculate: Area A_c

Centroid height y_b (and $y_t = h - y_b$) 2nd moment of area I_{x-x} 1st moment of area S_{x-x} (for shear only) Section modulus $Z_b = I_{x-x} / y_b$ and $Z_T = I_{x-x} / y_t$

Immediate strand relaxation and elastic shortening at transfer ...

Followed by long term losses due to creep, shrinkage and further strand relaxation

Results in a lower prestress σ_b and σ_t

$M_{Sd} = (\sigma_t + 0.45f_{ck}) Z_t$

Service moment of resistance is lesser of

 $M_{Sd} = (\sigma_t + 0.45f_{ck}) Z_t$ $M_{Sd} = (\sigma_b + f_{ctm}) Z_b \text{ Mostly critical}$

But for exposure > XC1, permissible tension f_{ctm} is reduced (depending on each country)

(5) A limiting calculated crack width, w_{max}, taking into account the proposed function and nature of the structure and the costs of limiting cracking, should be established.

Note: The value of w_{max} for use in a Country may be found in its National Annex. The recommended values for relevant exposure classes are given in Table 7.1N.

Table 7.1N Recommended values of w_{max} (mm)

UK National Annex

Exposure Class	Reinforced members and prestressed members with unbonded tendons	Prestressed members with bonded tendons					
	Quasi-permanent load combination	Frequent load combination					
X0, XC1	0,4 ¹	0,2					
XC2, XC3, XC4		0, 2 ²					
XD1, XD2, XS1, XS2, XS3	0,3	Decompression					
Note 1: For X0, XC1 exposure classes, crack width has no influence on durability and this limit is set to guarantee acceptable appearance. In the absence of appearance conditions this limit may be relaxed.							
Note 2: For these exposure classes, in addition, decompression should be checked under the guasi-permanent combination of loads.							

For Class XC2-XC4 (external) no tension allowed. But can use quasi-permanent live load x ψ_2

(5) A limiting calculated crack width, w_{max}, taking into account the proposed function and nature of the structure and the costs of limiting cracking, should be established.

Note: The value of w_{max} for use in a Country may be found in its National Annex. The recommended values for relevant exposure classes are given in Table 7.1N.

Exposure Class	Reinforced members and prestressed members with unbonded tendons	Prestressed members with bonded tendons						
	Quasi-permanent load combination	Frequent load combination						
X0, XC1	0,4 ¹	0,2						
XC2, XC3, XC4		0,2 ²						
XD1, XD2, XS1, XS2, XS3	0,3	Decompression						
Note 1: For X0, XC1 exposure classes, crack width has no influence on durability and this limit is set to guarantee acceptable appearance. In the absence of appearance conditions								
this limit may be relaxed.								
Note 2: For these exposure classes, in addition, decompression should be checked under the quasi-permanent combination of loads.								

Table 7.1N Recommended values of w_{max} (mm)

Worked example:

Worked example: XC1 exposure 1200 wide x 250 depth 12 no. 9.3 mm strands at 35 mm cover Axis a = 39.6 mm $f_{pk} = 1770 \text{ N/mm}^2$ Initial stressing to 70% = 1239 N/mm²

- $A_c = 182791 \text{ mm}^2$
- $y_{b} = 122.4 \text{ mm}$
- $I_{x-x} = 1270.3 \times 10^6 \text{ mm}^4$
- $Z_{b} = 1270.3 / 122.4 = 10.378 \times 10^{6} \text{ mm}^{3}$
- $Z_{T} = 9.955 \times 10^{6} \text{ mm}^{3}$
- $A_{ps} = 12 \times 52 = 624 \text{ mm}^2$
- $z_{cp} = 122.4 39.6 = 82.8 \text{ mm}$

Initial prestress $P_{pi} = 624 \times 1239 \times 10^{-3} = 773.1 \text{ kN}$ Relaxation Class 2. 2.5% at 1000 hours Immediate relaxation loss = 4.95 N/mm² (0.40%)

E_p (strand) 195 kN/mm² E_{cm}(t) (gravel aggregate) = 32.8 kN/mm² Elastic shortening loss = 49.67 N/mm² (4.01%)

Further loss of prestress at installation at (say) 28 days:

RH at transfer = 70% Creep coefficient at 28 days = 0.84 Creep loss of stress at 28 days = 34.0 N/mm² (2.74%)

P_{pmi} = 717.8 kN (this is used later to determine camber after installation)

Final loss of prestress at 500,000 hours (57 years):

RH at service (indoor exposure) = 50% Creep coefficient from installation to life = 1.60 Creep loss of stress = 61.8 N/mm² (4.99%)

Shrinkage $\varepsilon_{sh} = 420 \times 10^{-6}$ Shrinkage loss = 74.7 N/mm² (6.03%)

Long term relaxation loss = 40.3 N/mm² (3.25%)

Final $\sigma_{b} = 8.634$ N/mm² (increase of 4.5%) $\sigma_{t} = -1.825$ N/mm²

But ! compound values may be used for I_{xx} , Z_b and Z_t based on the *transformed area* of the strands:

$$m = E_p / E_{cm} = (195 / 36.3) - 1 = 4.37$$

Then $I_{xx} = 1289 \times 10^6 \text{ mm}^4$

 $Z_{b,co} = 10.634 \times 10^{6} \text{ mm}^{3}$ (increase of 2.5%)

Service moment of resistance is lesser of

 $M_{Sd} = (20.25 + 1.825) \times 10.004 = 220.8 \text{ kNm}$ $M_{Sd} = (8.634 + 3.80) \times 10.634 = 132.2 \text{ kNm}$

Syllabus

4 point bending test of prestressed hollow core slab.

0.8227

43

79T

Initial camber = -27 mm

1200 x 320 deep x 11.0 m span

Self + imposed M_{Ed} = service moment of resistance

Self + imposed M_{Ed} = M_{Rd} (ultimate resistance)

the second stands

First cracking Deflection approx 25 mm

Self + imposed M_{Ed} = 1.25 M_{Rd} (ultimate load + 25%)

Cracks widening and increasing Deflection approx 35 mm Limit = span / 250 = 44 mm

0.37 T

Ultimate moment of resistance

Strains Stress

First is the pre-strain due to final prestress after all losses =

 $\varepsilon_{po} = \sigma_{po} / E_{p}$

Bending strain now overtake the pre-strain

Strain development from initial prestress to ultimate

Total strain

$$\varepsilon_p = \varepsilon_{po} + 0.0035 (d - x) / x$$

Now find x and the stresses

Constitutive relationship stress v strain

Equilibrium $F_c = F_s$ 0.567 f_{ck} b 0.8 x = $f_p A_p$

and compatibility

$$\frac{x}{(d-x)} = \frac{\varepsilon_{cu}}{\varepsilon_{p}}$$

Combining ; $f_p = 0.567 f_{ck} b 0.8 (d-x) \epsilon_{cu} / A_p \epsilon_p$ or stress = inverse of strain

Total strain = pre-strain + compatibility concrete strain ε_{p}

$$= \varepsilon_{po} + \varepsilon_{cu} (d / x - 1) ...(2)$$

where, pre-strain after losses ϵ_{po} = σ_{po} / E_{p}

Force equilibrium

 $F_s = F_c$ $f_p A_p = 0.567 f_{ck} b 0.8 x ...(3)$

Combining 3 equations gives the quadratic solution:

0.567 f_{ck} 0.8 b ($\epsilon_{uk} - \epsilon_{LOP}$) x² -[0.9($\epsilon_{uk} - \epsilon_{LOP}$) + 0.1($\epsilon_{po} - \epsilon_{cu} - \epsilon_{LOP}$)] A_p f_{pd} x -0.1 ϵ_{cu} d A_p f_{pd} = 0

Solving yields x Then ε_p and f_p are found

Check that f_p is not greater than the maximum allowed, e.g. $f_{pk,max} = 1517 \text{ N/mm}^2$

Check 0.8x < depth of top flange

Determine the centroid of the compression block, $d_n = 0.4x$

Lever arm $z = d - d_n$

Ultimate moment of resistance

$$\mathbf{M}_{\mathbf{Rd}} = \mathbf{f}_{\mathbf{p}} \, \mathbf{A}_{\mathbf{p}} \, \mathbf{z}$$

 $A_{p} = 624 \text{ mm}^{2}$

d = 250 - 39.6 = 210.4 mm

 $\varepsilon_{po} = 984.5 / 195000 = 0.00505$

The quadratic terms are: 369.6 x² - 12515 x - 70708 = 0

x = 38.8 mm Compression depth = 0.8 x 38.8 = 31.0 mm < top flange depth = 35 mm

d_n = 0.4 x 38.8 = 15.5 mm z = 210.4 – 15.5 = 194.9 mm

Then $\epsilon_{p} = 0.202025 > 0.02$

 $\therefore f_p = 1517 \text{ N/mm}^2$

 $M_{Rd} = 624 \times 1517 \times 194.9 \times 10^{-6} = 184.4 \text{ kNm}$

Remember $M_{sd} = 132.2 \text{ kNm}$ $\therefore M_{Rd} / M_s = 1.39$

A good margin for most dead and live load combinations

Syllabus

Pre-camber, here 3 days after transfer

- 1. Pre-camber at transfer < L/300 ±50%
- **2. Deflection due to self weight at installation < L/250**
- **3. Long-term total deflection < L/250***
- 4. Active deflection (after installation) < L/500* (or L/350 if non-brittle finishes)</p>
- * EC2-1-1 limits

Upward camber due to transfer force

$$\delta_1 = - P_{pm0} z_{cp} L^2 / 8 E_{cm}(t) I_{xx}$$

Upward camber due to transfer force

$$\begin{split} \delta_1 &= - \ \mathsf{P}_{pm0} \ \mathsf{z}_{cp} \ \mathsf{L}^2 \ / \ 8 \ \mathsf{E}_{cm}(\mathsf{t}) \ \mathsf{I}_{xx} \\ \text{plus downward due to self weight} \\ \delta_2 &= +5 \ \mathsf{w}_o \ \mathsf{L}^4 \ / \ 384 \ \mathsf{E}_{cm}(\mathsf{t}) \ \mathsf{I}_{xx} \end{split}$$

Creep of concrete causes a reduction in Young's modulus, but at the same time the concrete is gaining strength and stiffness to 28 days.

Creep of concrete causes a reduction in Young's modulus, but at the same time the concrete is gaining strength and stiffness to 28 days.

Creep coefficient φ_{∞} = 2.5

Coefficient	of development a	
transfer	= 0.1	
15 days	= 0.3	
28 days	= 0.4	
2 months	= 0.5	
3 months	= 0.6	
∞	= 1.0	
Values from ASSAP, Italy		

Creep coefficient $\varphi_{\infty} = 2.5$

Coefficient of development at:transfer= 0.128 days= 0.4

So the net effect is to average the 1 and 28 day values

 $\varphi_1 = E_{cm}(t) / 0.5 \times [E_{cm} + E_{cm}(t)]$

Creep coefficient $\varphi_{\infty} = 2.5$

Coefficient of development at: transfer = 0.1 28 days = 0.4

 $\varphi_1 = E_{cm}(t) / 0.5 \times [E_{cm} + E_{cm}(t)] \times 2.5 \times (0.4 - 0.1)$

= $0.75 \times E_{cm}(t) / 0.5 \times [E_{cm} + E_{cm}(t)]$

At 28 days, - creep camber + a bit for the small change in prestress force + creep deflection = $\delta_3 = -(1+\varphi_1) \delta_1 + (P_{pm0} - P_{pmi}) z_{cp} L^2 / 8 E_{cm} I_{xx}$ plus downward due to self weight $\delta_4 = +(1+\varphi_1) \delta_2$

 \blacksquare

fib Manual

Camber at installation for 300 mm deep hcu

Long-term changes from E_{cm} to E_{cm} / (1+ φ_{∞})

 $0.8\varphi_{\infty} = 0.8 \times 2.5 = 2.0$

0.8 is a long-term concrete aging coefficient

For loads after installation

$$\varphi_{28} = 2.0 \times (1.0 - 0.4) = 1.20$$

Final long-term deflection from many sources

First, camber increases upwards, less a bit for the change in prestress

$$\delta_5 = -\delta_3 + [\varphi_{28} P_{pmi} - (P_{pmi} - P_{po})] z_{cp} L^2 / 8 E_{cm} I_{xx}$$

..then self weight creeps down, 2nd term is the creep $\delta_5 = -\delta_3 + [\varphi_{28} P_{pmi} - (P_{pmi} - P_{po})] z_{cp} L^2 / 8 E_{cm} I_{xx}$ $\delta_6 = + \delta_4 + 5 w_1 \varphi_{28} L^4 / 384 E_{cm} I_{xx}$

..followed by finishes, dead loads w₂ after 28 days

$$\delta_{5} = -\delta_{3} + [\varphi_{28} P_{pmi} - (P_{pmi} - P_{po})] z_{cp} L^{2} / 8 E_{cm} I_{xx}$$

$$\delta_{6} = +\delta_{4} + 5 W_{1} \varphi_{28} L^{4} / 384 E_{cm} I_{xx}$$

$$\delta_{7} = + (1 + \varphi_{28}) 5 W_{2} L^{4} / 384 E_{cm} I_{xx}$$

..and finally live loads $\psi_2 w_3$ over infinity time

$$\begin{split} \delta_5 &= -\delta_3 + \left[\varphi_{28} \ \mathsf{P}_{\mathsf{pmi}} - (\mathsf{P}_{\mathsf{pmi}} - \mathsf{P}_{\mathsf{po}}) \right] \, z_{\mathsf{cp}} \, \mathsf{L}^2 \, / \, 8 \, \mathsf{E}_{\mathsf{cm}} \, \mathsf{I}_{\mathsf{xx}} \\ \delta_6 &= + \, \delta_4 \, + \, 5 \, \mathsf{w}_1 \, \varphi_{28} \, \mathsf{L}^4 \, / \, 384 \, \mathsf{E}_{\mathsf{cm}} \, \mathsf{I}_{\mathsf{xx}} \\ \delta_7 &= + \, (1 + \varphi_{28}) \, 5 \, \mathsf{w}_2 \, \mathsf{L}^4 \, / \, 384 \, \mathsf{E}_{\mathsf{cm}} \, \mathsf{I}_{\mathsf{xx}} \\ \delta_8 &= + \, (1 + 0.8 \, \varphi_{\infty}) \, 5 \, \psi_2 \, \mathsf{w}_3 \, \mathsf{L}^4 \, / \, 384 \, \mathsf{E}_{\mathsf{cm}} \, \mathsf{I}_{\mathsf{xx}} \end{split}$$

Active deflections due to creep effects and live loads takes parts of the previous equations

$$\delta_{9} = \left[\varphi_{28} P_{pmi} - (P_{pmi} - P_{po}) \right] z_{cp} L^{2} / 8 E_{cm} I_{xx} + \varphi_{28} 5 (w_{1} + w_{2}) L^{4} / 384 E_{cm} I_{xx} + (1 + 0.8 \varphi_{\infty}) 5 \psi_{2} w_{3} L^{4} / 384 E_{cm} I_{xx}$$

For composite design, replace I_{xx} with $I_{xx,c}$

Calculate camber, installation and long-term deflection 8.0 m effective span

Self weight = $182791 \times 24.5 \times 10^{-6} = \frac{4.48 \text{ kN/m}}{1000 \text{ kN/m}}$ Dead loads = $3.0 \text{ kN/m}^2 = \frac{3.60 \text{ kN/m}}{1000 \text{ kN/m}}$ per unit

Use of floor = offices, then $\psi_2 = 0.3$ Live load = 0.3 x 4.0 = 1.2 kN/m² = <u>1.44 kN/m</u> per unit

Camber at transfer

<u>Net camber = - 5.9 mm < length / 300 = 26 mm</u>

Camber at installation $\varphi_1 = 2.5 \times (0.4 - 0.1) \times \frac{32837}{0.5 \times (32837 + 36283)} = 0.71$

$$\delta_3 = -11.6 \times (1 + 0.71) = -19.8 \text{ mm}$$

Self weight at installation $\delta_4 = +5.7 \times (1 + 0.71) = +9.7 \text{ mm}$ $\begin{aligned} & \bigoplus \\ & \text{Long term camber} \\ \phi_{\infty} &= 0.8 \text{ x } 2.5 = 2.0 \text{ for live load} \\ \phi_{28} &= 2.0 \text{ x } (1 - 0.4) = 1.2 \text{ for creep of camber and dead load} \\ & \delta_5 &= -19.8 - \frac{[717.8 \times 1.2 - (717.8 - 614.3)] \times 82.75 \times 8000^2}{8 \times 36283 \times 1289 \times 10^6} \end{aligned}$

= -19.8 -10.7 = -30.5 mm

Final = -30.5 + 30.1 = -0.4 mm < span/250 = 26 mm

Conclusions to EC2 Prestress

- **1.** Only 1 value for tension class = f_{ctm}
- 2. Zero tension if exposure > XC1
- 3. Prestress losses for initial relaxation and elastic shortening, plus shrinkage, creep and relaxation
- 4. Ultimate stress and strain equilibrium
- 5. Camber = immediate at transfer + creep
- 6. Deflections = static + creep