IPHA PRODUCTION SEMINAR 2016

October 26–27. Lleida · Mollerussa, Catalonia

Production cycle of hollow core slabs (excl. casting)

Introduction

Olli Korander

- Involved in precast business since 1978
 - Designer
 - R&D engineer
 - R&D director
 - R&D, productivity, transfer of knowledge, safety
 - Managing director in Consolis Technology
 - Member of Consolis Executive Committee
 - Board member in several Consolis companies
 - Retired 2012 from Consolis
 - Board member in international organisations (BIBM, IPHA)
 - Board member in Finnish standardisation organisation (Sfs)
 - Actively involved in fib and national associations
 - Board member in Polarmatic Oy

Main topics

- The main factors in production process evaluation
- Some other aspects in technology selections
- Level of mechanization and automation

Production Process

- 1. Bed cleaning and strand pulling
- 2. Pre-stressing
- 3. Measuring and marking
- 4. Hole cutting
- 5. Drainage holes
- 6. Covering and curing
- 7. Sawing
- 8. LOGISTICS and HANDLING
- Some future possibilities in production
- Opinions based on 35 + years experience

Importance of business environment

Market need

- Products, product mix, specialised business/ multi-product business...
- Services
- What is the life cycle position of <u>the product</u> in the market
- Used business model
 - Different offering (Full building / sub-systems / single components)
 - <u>Cost driven</u> / Added value driven
- Planning and management principles
 - Used management/ process control tools (ERP)
 - Used engineering principle and methods
 - Individual slabs / Floor design
 - Engineering tools (Modeling, calculations, drawings, input to ERP)
 - Used production planning principle
 - Used assembly planning principle
- Logistics

→ INDUSTRIALISED CONSTRUCTION as a TARGET

iction Seminar 2016. October 26-27. Lleida · Mollerussa. Catalonia

Features of industrialised construction

- Work is transferred from site to factory conditions
- Efficient production methods are used
 - Mechanization
 - Automation
 - Better quality control

Efficient use of raw materials

- Less raw materials
- Less waste
- Sustainability
- Modern design methods are used
- Site work more effective
 - Mainly assembly of components
- Less noise, dust to the neighborhood during construction
- More attractive job for competent and talented labor
- Safe site work

Process factors in technology selection

roduction Seminar 2016. October 26-27. Lleida · Mollerussa. Catalonia

- Safety
- PRODUCTION as a PROCESS
- Costs
 - Manpower
 - Use of raw materials
 - Investment
- Productivity
 - Through put time
 - Unit time / m, m², m³
 - Down time
- Quality
 - Visual quality
 - Technical quality
- Waste
 - Concrete
 - Steel

Process factors in technology selection (cont.)

- Used casting technology
- Factory lay-out, specialised/multi product factory
- Product mix
 - Cross-sections
 - Average size, max length, weight
 - Product types
 - "Normal slabs"
 - Amount of "special slabs" (narrow, angle cuts, openings)
 - Insulated slabs
 - "Added value" slabs (for insulation, heating, cooling)
 - Hollow core as a wall, foundation etc.
- Capacity need / actual utilisation
 - m²/m²
- Process cycle need / possibilities
 - Casting speed
 - Curing / hardening time

Production Seminar 2016, October 26-27, Lleida - Mollerussa, Catalonia

Productivity areas

Manpower; typically main emphasis

Materials

- Concrete mix design
- Concrete / steel waste
- Other waste

Process

- New methods and process control tools
- Production planning principles
- Process waste
- Maintenance
- Down time / preventive maintenance
- Production machinery power (electricity, gas, diesel)

Design methods and tools

- Quality
- Safety
- Capital
 - Capacity utilisation
- Others
 - Role of administration

Level of mechanization and automation

Size of the factory

- Flexibility according to market needs
- Specialised/ multi-product

Available input data for automation

- Internal / external design
- Level in industry
 - Do we have industrial culture?
- Level of personnel
 - Do we get best people?
- Evolution or revolution
 - Investments mainly in old factories
- Benefits of automation
 - What are the benefits?
 - Do we get more flexibility?

Hollow-core slab, product evolution

Hollow-core slab, production evolution

Case Finland

Cost driven products

Added value products

Production Process

- 1. Bed cleaning and strand pulling
- 2. Pre-stressing
- 3. Measuring and marking
- 4. Hole cutting
- 5. Drainage holes
- 6. Covering and curing
- 7. Sawing

8. LOGISTICS and HANDLING

1. Bed cleaning and strand pulling

- Manual / mechanised
- Cleaning / waste handling
- Oiling
 - Oil quality
 - Amount
 - Even oil surfaces
 - Strand pulling
 - Individual strands
 - All strands
 - Oiling of the strands / strand slippage

Cleaning and strand pulling, equipment

Production Seminar 2016, October 26-27, Lleida - Mollerussa, Catalonia

2. Pre-stressing

Safety

- Cleaning of grips
- Pre-stressing procedure and safety

Anchor structure

- What is the usable length of the bed
- Capacity utilisation

Control of pre-stressing

• Power / elongation or both

Single or bundle pre-stressing

- Size of the factory
- Normally differences minor
- Even pre-stressing easy to test

Waste

- Starting length (> 1 m)
- Ending length (min 1 m-xx m)
- Use of continuous strands

Pre-stressing, equipment

Use of continuous strands

- Steel waste
- Bed utilisation / production planning principle
- Steel strength / grips
 - Is it allowed?
 - A lot of tests done
- Steel stock value

3. Measuring and marking

- Manual
 - Tolerances
- Automated
 - Tolerances
 - Measuring principle
 - Laser
 - Pulse
 - Ink jet

- Is input data available in right format for all products?
 - Different formats in design and machinery, standards?
- Labeling, on the slab/ other labels
- Height measurement, control/ concrete waste?
 - Use of tolerances; production in minus area
 - Example 270 mm slab
 - 2 mm extra height = 1,4 % waste

Automatic measuring, equipment

Production Seminar 2016, October 26-27, Lleida · Mollerussa, Catalonia

4. Hole cutting

- Manual
- Mechanised
- Automatic

Fresh concrete

- Shovel principle
- Vacuum principle
- Excavating principle

Hardened concrete

- Diamond tools, drilling, chain saw
- Water jet cutting?

Important topics

Tolerance and outlook requirements

roduction Seminar 2016. October 26-27. Lleida · Mollerussa. Catalonia

Re-use of concrete

Hole cutting, equipment

5. Drainage holes

Are they needed?

- In most cases <u>yes</u>, especially in cold climate
- Water in voids is a very expensive claim
- Sales contract topic, who is responsible

Drilling from the top

- Fresh concrete
- Quality of holes

Drilling from the bottom

- Hardened concrete
- Quality of holes

Different drilling methods

- Normal drills
- Hammering
- Water jet

6. Sawing

- Normal sawing
- Angle cuts
- Longitudinal sawing
- Fresh sawing
 - Quality of sawing
 - Tolerances
- Sawing of hardened concrete
 - Manually operated
 - Fully automated, measuring principle
 - Dust and slurry handling
 - Availability of input data in right format

Sawing, cont.

Important topics

- Sawing speed
- Sawing quality, tolerances
- Sawing costs / blade quality
- Noise level
 - Noise protection
 - Blade structure
- Quartz dust
 - Aggregate minerals
 - Saw machine structure

Sawing, equipment

Production Seminar 2016, October 26-27, Lleida - Mollerussa, Catalonia

7. Curing and maturity control

Why important?

- To control the rate and extent of <u>moisture loss</u> from concrete during cement hydration
- On-line control of concrete temperature, control of heating
- Calculation of <u>final strength</u>
- Forecast of <u>hardening time</u>
- Tracking of curing process needed in some projects
- Variations in raw materials; aggregates, cement
- Less waste (strand slippage)
- Lower energy consumption, short pay-back time

=> OPTIMISED and CONTROLLED PROCESS CYCLE

Curing and maturity control

Methods of curing concrete

Minimise moisture loss from the concrete, by covering it with a relatively impermeable membrane.

- Prevent moisture loss by continuously wetting the exposed surface of the concrete.
- Keep the surface moist and, raise the temperature of the concrete => increasing the rate of strength gain.

Maturity control principle

8. Logistics and handling

- Handling in the factory
- Handling in the stock yard
- Assembly at the building site
- Main aspects in lifting
 - Safety in all phases/ local regulation
 - Speed
 - Amount of special slabs (narrow slabs, large openings etc.)
 - Storage system
 - Transportation contract
 - Transportation method and assembly order and method
- Lifting options
 - Individual slabs
 - Bundle lifting
 - Long lifting

Lleida · Mollerussa, Catalonia

Logistics and handling, production hall

<u>Cranes</u> Clamps / lifting beams

Lifting hooks / lifting beams

Logistics and handling, production hall

Clamps / hooks

- Total production cycle time
- Manual / mechanised hook assembly
- Extra concrete for hook casting
- Handling of special slabs (narrow, large openings)
- Calculation principle and calculated safety
- De-molding is the first quality control test
- Load bearing capacity of both methods is based on concrete tensile strength
 - Design principle of hooks, bonding under the strand or not
- Planning principle is very important, sorting in the hall or stock yard

Logistics and handling, clamps

Logistics and handling, lifting hooks and anchors

Lifting hooks, equipment

Logistics and handling, storage

In coming products

- Assembly order
- Load size
- Available storage area
- Out going products
 - Transportation contracts
 - Who is doing loading?
 - Assembly order

Logistics and handling, storage

Single slabs

Ready loads

Bundle handling

Crane on the lorry

Logistics and handling, at site

Fixing of the load

Hollow-core slabs

- Notice the location of stacking timbers
- Fixing behind stacking timber, not from the side of cantilever

Logistics and handling, at site

Logistics and handling, at site

- Safety
 - Safety rules
- Assembly instructions
 - Easy to understand
- Assembly speed
 - Crane speed / lifting height
 - Adjusting of the slabs
 - Extra castings of hooks

INSTALLING A HOLLOW-CORE SLAB

Clamps / hooks

	Clamps	Hooks
Safety	++	++
Unit cost	+++	+
Handling speed	++	+++
Special slabs	+	+++
Local regulation		
Extra site work	+++	++

Future of pre-cast industry.....

- Evolution will continue
- Larger factories, more flexible production?
- Co-operation with other players and materials
- Environmental challenges are real
- Examples from other industries
- Industrialization of total building process
 - Focus on productivity
 - Design the key area
 - Pre-fabrication as a main tool
 - Automation and mechanization
- More emphasis on material technology
 - Cost, quality / outlook, sustainability

MORE INNOVATIONS NEEDED

October 26-27. Lleida · Mollerussa. Catalonia

Future possibilities in hollow core production

Fully automated factories

- Larger units?
- Technology is available

Automation of individual steps

- Heavy work
- Better quality
- Simulation as production planning tool
- Faster production cycle / hardening
- Preventive maintenance
- New production concepts
 - Now fixed product, moving machinery
 - Moving product, fixed work stations

New technologies

- Water jet, laser
- RFID, machine vision

