Production cycle of hollow core slabs (excl. casting)

Olli Korander
Introduction

Olli Korander

- Involved in precast business since 1978
 - Designer
 - R&D engineer
 - R&D director
 - R&D, productivity, transfer of knowledge, safety
 - Managing director in Consolis Technology
 - Member of Consolis Executive Committee
 - Board member in several Consolis companies
 - Retired 2012 from Consolis
 - Board member in international organisations (BIBM, IPHA)
 - Board member in Finnish standardisation organisation (Sfs)
 - Actively involved in fib and national associations

- Board member in Polarmatic Oy
Main topics

- The main factors in production process evaluation
- Some other aspects in technology selections
- Level of mechanization and automation
- Production Process
 1. Bed cleaning and strand pulling
 2. Pre-stressing
 3. Measuring and marking
 4. Hole cutting
 5. Drainage holes
 6. Covering and curing
 7. Sawing
 8. LOGISTICS and HANDLING
- Some future possibilities in production
- Opinions based on 35 + years experience
Importance of business environment

- Market need
 - Products, product mix, specialised business/ multi-product business...
 - Services
- What is the life cycle position of the product in the market
- Used business model
 - Different offering (Full building / sub-systems / single components)
 - Cost driven / Added value driven
- Planning and management principles
 - Used management/ process control tools (ERP)
 - Used engineering principle and methods
 - Individual slabs / Floor design
 - Engineering tools (Modeling, calculations, drawings, input to ERP)
 - Used production planning principle
 - Used assembly planning principle
- Logistics

⇒ INDUSTRIALISED CONSTRUCTION as a TARGET
Features of industrialised construction

- Work is transferred from site to factory conditions
- Efficient production methods are used
 - Mechanization
 - Automation
 - Better quality control
- Efficient use of raw materials
 - Less raw materials
 - Less waste
 - Sustainability
- Modern design methods are used
- Site work more effective
 - Mainly assembly of components
- Less noise, dust to the neighborhood during construction
- More attractive job for competent and talented labor
- Safe site work
Process factors in technology selection

- **Safety**
- **PRODUCTION as a PROCESS**
- **Costs**
 - Manpower
 - Use of raw materials
 - Investment
- **Productivity**
 - Through put time
 - Unit time / m, m², m³
 - Down time
- **Quality**
 - Visual quality
 - Technical quality
- **Waste**
 - Concrete
 - Steel
Process factors in technology selection (cont.)

- Used casting technology
- Factory lay-out, specialised/multi product factory
- Product mix
 - Cross-sections
 - Average size, max length, weight
 - Product types
 - “Normal slabs”
 - Amount of “special slabs” (narrow, angle cuts, openings)
 - Insulated slabs
 - “Added value” slabs (for insulation, heating, cooling)
 - Hollow core as a wall, foundation etc.
- Capacity need / actual utilisation
 - m^2/m^2
- Process cycle need / possibilities
 - Casting speed
 - Curing / hardening time
Productivity areas

- **Manpower; typically main emphasis**
- **Materials**
 - Concrete mix design
 - Concrete / steel waste
 - Other waste
- **Process**
 - New methods and process control tools
 - Production planning principles
 - Process waste
 - Maintenance
 - Down time / preventive maintenance
 - Production machinery power (electricity, gas, diesel)
- **Design methods and tools**
- **Quality**
- **Safety**
- **Capital**
 - Capacity utilisation
- **Others**
 - Role of administration
Level of mechanization and automation

- Size of the factory
 - Flexibility according to market needs
 - Specialised/ multi-product
- Available input data for automation
 - Internal / external design
- Level in industry
 - Do we have industrial culture?
- Level of personnel
 - Do we get best people?
- Evolution or revolution
 - Investments mainly in old factories
- Benefits of automation
 - What are the benefits?
 - Do we get more flexibility?
Hollow-core slab, product evolution

Case Finland

- Eurocode requirements
 - 370 mm sound insulation floor
 - 320 mm sound insulation floor
 - Building service floor
 - Integrated floors
- 320 mm slab
- Bathroom slabs
- 500 mm slabs
- 400 mm slabs
- 2400 mm wide slabs
- Foundation beams
- 400 mm slab / 3 voids
- Narrow slabs
- Composite slabs
- Fire slabs
- 150 mm slab
- Insulated slabs
- 200 mm slab
- 265 mm slab

|------|------|------|------|------|
Hollow-core slab, production evolution

<table>
<thead>
<tr>
<th>Case Finland</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>Extrusion / vibration compaction</td>
<td>Extrusion / vibration compaction</td>
<td>Extrusion / shear compaction</td>
<td>B&M automation, concrete transportation</td>
<td>Multi purpose machinery</td>
</tr>
<tr>
<td></td>
<td>Drainage hole machine</td>
<td>Angle cutting</td>
<td>Improved shear compaction</td>
<td>Extrusion / shear compaction</td>
<td>Lifting loops</td>
</tr>
<tr>
<td></td>
<td>Modular casting machines</td>
<td>Saw</td>
<td>Gluing of insulation</td>
<td>Hole cutting machine</td>
<td>Measuring automation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maturity control</td>
<td>Lifting beam automation</td>
<td>Bathroom slab machinery</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sawing automation</td>
<td>4th gen. casting machine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hole cutting automation</td>
<td></td>
</tr>
</tbody>
</table>

Production Seminar 2016, October 26-27, Lleida - Mollerussa, Catalonia
Cost driven products
Added value products
Production Process

1. Bed cleaning and strand pulling
2. Pre-stressing
3. Measuring and marking
4. Hole cutting
5. Drainage holes
6. Covering and curing
7. Sawing
8. LOGISTICS and HANDLING
1. Bed cleaning and strand pulling

- Manual / mechanised
- Cleaning / waste handling
- Oiling
 - Oil quality
 - Amount
 - Even oil surfaces
 - Strand pulling
 - Individual strands
 - All strands
 - Oiling of the strands / strand slippage
Cleaning and strand pulling, equipment
2. Pre-stressing

- Safety
 - Cleaning of grips
 - Pre-stressing procedure and safety

- Anchor structure
 - What is the usable length of the bed
 - Capacity utilisation

- Control of pre-stressing
 - Power / elongation or both

- Single or bundle pre-stressing
 - Size of the factory
 - Normally differences minor
 - Even pre-stressing easy to test

- Waste
 - Starting length (> 1 m)
 - Ending length (min 1 m-xx m)
 - Use of continuous strands
Pre-stressing, equipment
Use of continuous strands

- Steel waste
- Bed utilisation / production planning principle
- Steel strength / grips
 - Is it allowed?
 - A lot of tests done
- Steel stock value
3. Measuring and marking

- Manual
 - Tolerances
- Automated
 - Tolerances
 - Measuring principle
 - Laser
 - Pulse
 - Ink jet

Is input data available in right format for all products?
 - Different formats in design and machinery, standards?

Labeling, on the slab/ other labels

Height measurement, control/ concrete waste?
 - Use of tolerances; production in minus area
 - Example 270 mm slab
 - 2 mm extra height = 1.4% waste
Automatic measuring, equipment
4. Hole cutting

- Manual
- Mechanised
- Automatic

Fresh concrete
- Shovel principle
- Vacuum principle
- Excavating principle

Hardened concrete
- Diamond tools, drilling, chain saw
- Water jet cutting?

Important topics
- Tolerance and outlook requirements
- Re-use of concrete
Hole cutting, equipment
5. Drainage holes

- Are they needed?
 - In most cases yes, especially in cold climate
 - Water in voids is a very expensive claim
 - Sales contract topic, who is responsible

- Drilling from the top
 - Fresh concrete
 - Quality of holes

- Drilling from the bottom
 - Hardened concrete
 - Quality of holes

- Different drilling methods
 - Normal drills
 - Hammering
 - Water jet
6. Sawing

- Normal sawing
- Angle cuts
- Longitudinal sawing

- Fresh sawing
 - Quality of sawing
 - Tolerances

- Sawing of hardened concrete
 - Manually operated
 - Fully automated, measuring principle
 - Dust and slurry handling
 - Availability of input data in right format
Sawing, cont.

Important topics

- Sawing speed
- Sawing quality, tolerances
- Sawing costs / blade quality
- Noise level
 - Noise protection
 - Blade structure
- Quartz dust
 - Aggregate minerals
 - Saw machine structure
Sawing, equipment
7. Curing and maturity control

Why important?

- To control the rate and extent of moisture loss from concrete during cement hydration
- On-line control of concrete temperature, control of heating
- Calculation of final strength
- Forecast of hardening time
- Tracking of curing process needed in some projects
- Variations in raw materials; aggregates, cement
- Less waste (strand slippage)
- Lower energy consumption, short pay-back time

=> OPTIMISED and CONTROLLED PROCESS CYCLE
Curing and maturity control

Methods of curing concrete

- Minimise moisture loss from the concrete, by covering it with a relatively impermeable membrane.

- Prevent moisture loss by continuously wetting the exposed surface of the concrete.

- Keep the surface moist and, raise the temperature of the concrete => increasing the rate of strength gain.
Maturity control principle

- Heat loss to air model
- Reaction heat model
- Heating model

Production hall temperature
Concrete temperature
External heating energy

Heat loss to air model
Reaction heat model
Heating model
8. Logistics and handling

- Handling in the factory
- Handling in the stock yard
- Assembly at the building site

Main aspects in lifting
- Safety in all phases/ local regulation
- Speed
- Amount of special slabs (narrow slabs, large openings etc.)
- Storage system
- Transportation contract
- Transportation method and assembly order and method

Lifting options
- Individual slabs
- Bundle lifting
- Long lifting
Logistics and handling, production hall

Cranes
Clamps / lifting beams

Collection wagons / cars

Lifting hooks / lifting beams
Logistics and handling, production hall

- **Clamps / hooks**
 - Total production cycle time
 - Manual / mechanised hook assembly
 - Extra concrete for hook casting
 - Handling of special slabs (narrow, large openings)
 - Calculation principle and calculated safety

- **De-molding is the first quality control test**
- **Load bearing capacity of both methods is based on concrete tensile strength**
 - Design principle of hooks, bonding under the strand or not
- **Planning principle is very important, sorting in the hall or stock yard**
Logistics and handling, clamps

- Locking of clamps
- Adjustable beam length
 - One clamp
 - 2 clamps
 - 4 clamps
- Cross section /
 good compaction
- Edge profile
- Safety chain
Logistics and handling, lifting hooks and anchors
Lifting hooks, equipment
Logistics and handling, storage

- **In coming products**
 - Assembly order
 - Load size
 - Available storage area

- **Out going products**
 - Transportation contracts
 - Who is doing loading?
 - Assembly order
Logistics and handling, storage

Single slabs

Bundle handling

Ready loads

Crane on the lorry
Logistics and handling, at site

Fixing of the load

Hollow-core slabs

- Notice the location of stacking timbers
- Fixing behind stacking timber, not from the side of cantilever
Logistics and handling, at site
Logistics and handling, at site

- **Safety**
 - Safety rules

- **Assembly instructions**
 - Easy to understand

- **Assembly speed**
 - Crane speed / lifting height
 - Adjusting of the slabs
 - Extra castings of hooks
Clamps / hooks

<table>
<thead>
<tr>
<th></th>
<th>Clamps</th>
<th>Hooks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Unit cost</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Handling speed</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Special slabs</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Local regulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extra site work</td>
<td>+++</td>
<td>++</td>
</tr>
</tbody>
</table>
Future of pre-cast industry…..

- Evolution will continue
- Larger factories, more flexible production?
- Co-operation with other players and materials
- Environmental challenges are real
- Examples from other industries
- Industrialization of total building process
 - Focus on productivity
 - Design the key area
 - Pre-fabrication as a main tool
 - Automation and mechanization
- More emphasis on material technology
 - Cost, quality / outlook, sustainability

- MORE INNOVATIONS NEEDED
Future possibilities in hollow core production

- Fully automated factories
 - Larger units?
 - Technology is available

- Automation of individual steps
 - Heavy work
 - Better quality

- Simulation as production planning tool

- Faster production cycle / hardening

- Preventive maintenance

- New production concepts
 - Now fixed product, moving machinery
 - Moving product, fixed work stations

- New technologies
 - Water jet, laser
 - RFID, machine vision