
IPHA PRODUCTION SEMINAR 2016

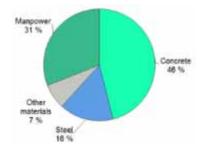
October 26–27. Lleida · Mollerussa, Catalonia

Efficiency in Hollowcore Production

Jani Eilola

Elematic

in cooperation with **Pujol**


Jani Eilola

- Product Director 2014-
 - Floor technologies
 - Acotec (non-loadbearing partition wall system)
- Joined Elematic 2007
- MSc in Mechanical Engineering
 - Tampere University of Technology 2002

Topics

- What Is Efficiency?
- Current State
 - Cost structure of HC
 - What do the indicators tell us?
- Efficiency by Area
 - Labour
 - Material
 - Energy
 - Process
- How To Improve?
 - Best Available Technology
 - Line according to need
 - Most automatic hollow core production line
 - loT / Industry 4.0
 - MES

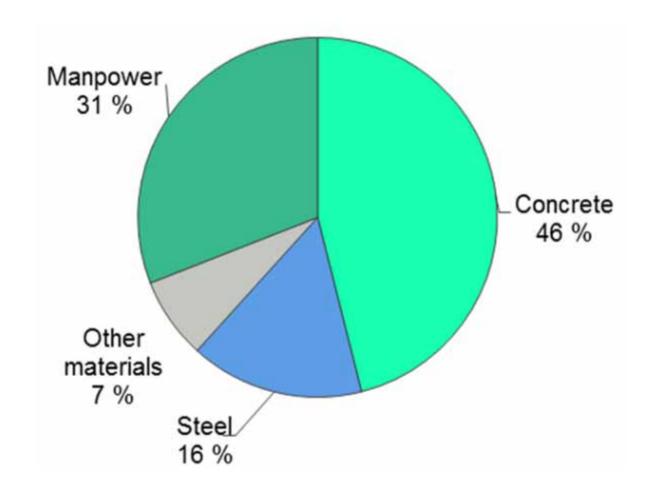
Motivation

Benefits of efficiency

- 30 % less concrete
- 50 % less cement
- 65 % less manhours
- + xx % more capacity
- => Production cost: 50 %

What is Efficiency?

- The bottom line: €/m2
 - Labour + Material + Capital Cost



Current State – Typical Figures

Cost of HC production (Western Europe)

Current State – Typical Figures

■ Labour 0.13 – 0.3 (most: 0.2-0.25) manhours/m2

Assisting time ratio 0.28

of which

Personal 0.12

Workphase 0.16

Utilization rate 0.8 – 0.9

Material

□ Scrap 0.8 – 2 % (of casted slab)

Concrete

Waste app. 7-9 %

Actual produced concrete vs. theoretical volume needed for slabs

Cement content
Typical: 350-450 kg/m³

Current State – Typical Figures

Steel

Waste 7-9%

Process

Bed utilization rate 90-95%


Storage duration2-4 weeks

Cycle time (Cover off till cover on) 3.5 – 8 h

Labour

Manhours/m²

- Either reduce manhours
- Or keep manhours the same and increase capacity

Labour

"Hard" factors:

- Level of automation
- Factory set-up
- Market situation

"Soft" factors:

- Production planning
- Utilization
- Control
- Skills & Flexibility
- Motivation

Concrete

- Cross section kg/m2
 - -30% with lighter cross section
- Actual kg/m2 vs. Planned kg/m2
 - Preventive maintenance
 - Correct adjustment of machine
- Amount of cement
 - More compaction means less cement
 - Down to 300 kg/m3
 - Fly-ash as substitute
 - Min. 225 kg/m3 + fly ash

Concrete

- Recycle concrete
 - From openings
 - typical 1-4%
 - Crushed factory scrap

Concrete

- Recycle water
- Waste in the start/end
 - Typical 3-5 m
 - Start-plate
 - Stop casting when slab is complete
 - Production planning => maximum bed utilization
 - Long beds

Steel

Strand-material

- Available cross-sections and stranding = Planned kg/m² vs needed.
- Actual kg/m² vs. Planned kg/m²
- Over-stranding vs. Bed utilization
- Typical 5-10%
- Waste at the ends
 - Have long bed! (200m!)
 - Bed planning
 - Start-plates
 - Continuous strands
 - Bundle stressing

Spare & Wear Parts

- Feeding screws, sleeves, plates
- High quality parts last longer
- High availability of spares means low downtime
- Preventive maintenance reduces conrete consumption, scrap & unplanned downtime

Water

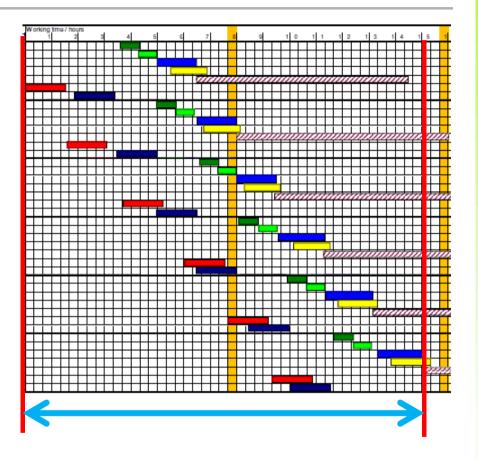
- Material use: Water
 - $_{\rm o}$ m³/m²
 - Cutting
 - Water required to cool and keep blade clean
 - Washing
 - Can be recycled
 - Settling and filtration needed

Energy

- kWh/m2
 - Electricity
 - LPG
 - Diesel
 - Heat
- Machine electricity consumption
- Bed heating
 - Maturity control system
 - Cover well
 - Insulation under bed
- Aggregate heating, water heating
 - in cold countries
- Plant heating/lighting/etc.

Process

- Correct plant design
- Automation level / Efficient equipment
- Production planning, control, analysis



Process

Process

- Cycle time defines the capacity
- Total time = X times cycle time
- Casting usually bottle neck
 - Add an extruder/slipformer
- When casting beds more than once a day, the curing is also a bottle neck.
- Speed of extruder/slipformer
 - -1 2.6 m/min
 - Means 15-25 m³/h

Partners

- Selection of reliable partners
 - Plant supplier
 - Raw material supplier

How to improve efficiency of existing line?

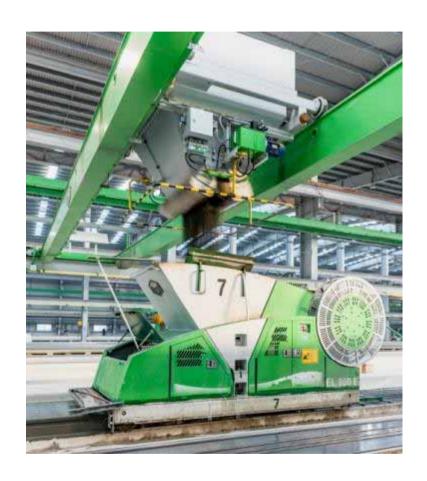
Factory audit

Reduce waste

- Preventive maintenance
- Better planning and analysis with modern tools
- Improve cycle time
- Adjust the machines

Remove bottle necks

- I.e. Buy new mixer & shuttle
- I.e. Add more transportation capacity / Half or Full load handling
- etc.


How to improve efficiency?

- Invest in higher mechanization and automation level
 - Step-by-step upgrade of existing line
 - Bundle lifting
 - Automatic concrete transportation
 - Automatic saw
 - Automatic machine for making openings
 - Automatic machine for installing lifting loops
 - Plotter
 - For automatic machines you need production data in electronic format
 - Production planning software needed
 - For automatic conrete transportation electronic data not needed

Bundle lifting

Automatic Concrete Transportation

Automatic Saw

Automatic machine for making openings

Automatic machine for fixing lifting loops

Plotter

How to improve efficiency?

- When building a green field factory
 - New state-of-the-art factory
 - Suitable for specific need

Best Available Technology

Suitable factory for customer need

- Need for low, medium, high automation level
- Labour cost can be 3 50 €/h
- Needed capacity 50 000 1 200 000 m²/a
- Uncertainty and availability of financing: Investment level lower than optimal (in tech/econ. point of view)

LOW - MEDIUM - HIGH AUTOMATION/CAPACITY

Most automatic HC production line

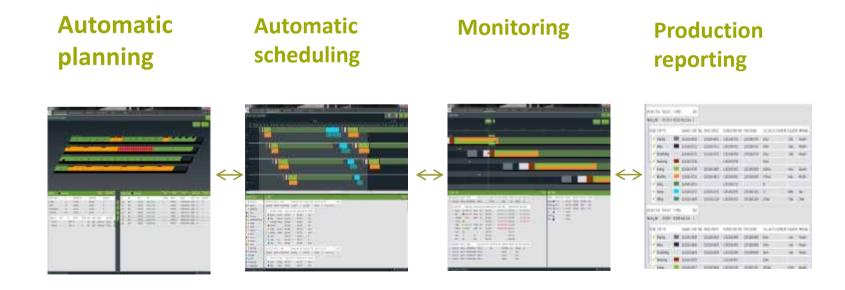
Most automatic HC production line

Possible to reach

- 0.04 0.09 manhours/m2
- -75% compared to current 0.25 manhours/m²
- Automatic operation on beds
- Automatic unloading of beds
- Automatic lifting in storage
- Better safety
 - Low noise and dust
- Higher end-product quality
- Max capacity

upto 1 000 000 m²/a

IoT / Industry 4.0

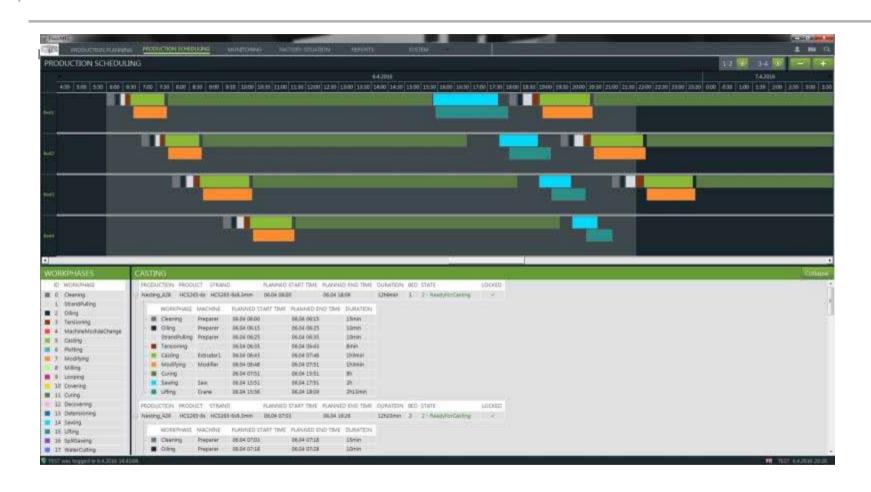

What does it mean for hollow core industry?

- Automated and flexible production and workflow planning
- Line monitoring and storing of work phase duration to database automatically
- Accurate planning based on statistical data
- Electronic tool for Lean optimization process

MES = Manufacturing Execution System

CONSISTS OF:

- MES application
- Wifi communication with machines
- Embedded computers & sensors in machines
- Indoors positioning system



IoT / Industry 4.0

Communication between MES system and machines

- Machine "health" monitoring via sensors/wifi
- Information on machine status to MES system
- Heat treatment report read from maturity control to database
- Pre-stressing report from stressing machine to database
- Quality control data from handle held devices or machine vision QA control
- Communication between machines
- Reports in cloud
- Remote monitoring i.e. with tablet computer anywhere in the world
- Production optimization based on Big Data

MES = Manufacturing Execution System

CONCLUSION

- Lot of old tricks and basic things you can improve on
- New exciting technologies and ways to improve efficiency
- Everybody can tune-up performance
- Let's make Hollowcore even more competitive, conquer new market and prosper together!

Questions?

Questions?

Thank You!

Thank You!