FIRE RESISTANCE HOLLOW CORE FLOORS

Ir. Arnold Van Acker

Contents

- 1. Overview test results world wide
- 2. First conclusions
- 3. Recent tests with premature shear failure
- 4. Phenomenon
- 5. Research Fellinger TNO Netherlands
- 6. Research carried out in Belgium
- 7. Design philosophy
- 8. Open questions
- 9. Recommendations for tests

First tests in Belgium in 1971 on 265 mm slabs

one single hollow core unitlength 6.00 m

First test

- 6 smooth strands Φ 12.5
- Shear failure at 36 min Second test
- 6 indented strands Φ 12.5
- Shear failure at 29 min.

Third test

- 6 strands Φ 12.5 with oval central wire
- Shear failure at 33 min.

Test in Belgium in 1972 on 265 mm slab in light weight concrete

Failure: longitudinal splitting after 76 min. exposure

1 bar Φ 10 in 2 open sleeves

Tests in Belgium in 1980 on floor composed of 3 units of 600 mm width, with topping and end beam

Tests in Belgium in 1990 on floor composed of 3 units, with topping, end beam and bars in sleeves

Tests in Finland in 1985 - Rf 60 min.

Cover strands: 30 mm Moisture: 2.3 %

Tests in Finland in 1984 on HC 265 mm

- a: loading 10.8 kN/m² axis distance 35 mm Rf 60 min.
- b: loading 1.25 kN/m² axis distance 65 mm Rf 130 min.

Overview test results Tests Underwriters USA

Concrete frame around test floor

Test results HC world wide

Temperature profiles

Temperature profiles

Large dispersion temperature measurements Registered strandtemperatures in HC 400 - axis distance strands 55 mm

330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500

Influencing parameters

- Slab thickness
- Cover on strands
- Connection reinforcement at support
- Topping
- Obstruction thermal dilatation
- Concrete strength
- Moisture content
- Type of aggregates

First conclusions

- Shear is governing for slabs without support connections
- Bending failure when adequate connections
 Difficult to reach Rf 120 at some laboratories
- Large dispersion temperature registrations in same slab

More recent fire tests

 Premature shear failure : tests in France, Denmark and Holland

⇒ Phenomenon
⇒ Real behaviour during a fire
⇒ Research on shear capacity HC under fire
⇒ Recommendations for fire tests

More recent tests

Tests CTiCM France

Shear failure HC slabs after 32 minutes fire exposure

More recent tests Tests Danish Institute of Fire Technology

Test results:

HC 185 HC 220 HC 270 22 min. shear failure26 min. shear failure21 min. shear failure

More recent tests

Tests Danish Institute of Fire Technology

Phenomenon Tensile stresses in webs due to gradient

C Research Fellinger C Tests Fellinger at TNO The Netherlands I deke staalplaat 1 mm + Rockwool 40 mm

Tested units:

A 200	VBI slipform	B55	calcareous
X 200	Spanbeton extrusion	B65	calcareous
XB 200	Spanbeton		ALL SET
VX 265	Spanbeton	North Martin	
HVP 260	BetonSon extrusion	B65	Siliceous
K 400	Dycore extrusion	B65	Siliceous

Research Fellinger TNO

Analysis existing HC test reports

Influence axis distance and load factor on failure type

Test results TNO

Rf : 96 min.	Failure: Anchorage
125	Flexure
125	Anchorage
159	Flexure
35	Shear-tension
25	Long. shear
55	Shear-tension
60	Shear-tension
30	Shear-tension
24	Shear-tension
C.F. C. F. C.F.	四人不明月一月月
117	Flexure
33	Shear-tension
33	Shear-tension
40	Anchorage
42	Shear-tension
39	Shear-tension
	Rf: 96 min. 125 125 159 35 25 55 60 30 24 117 33 33 40 42 39

Research shear resistance HC Programme carried out in Belgium

Loading: 100 kN

Test results:

T1: 83' no failure T2: 120' no failure T3: 120' no failure T4: 120' no failure **Failure loading after tests:**

T1 : 178/254 kN - bending T2 : 292/324 kn - Bending T3 : 267/254 kN - bending T4 : 305 kN - bending 305 kN - shear

Design considerations

Need for adequate connections

Interlocking effect enables to take up shear forces. This can be realised by:

- Ties in casted open cores
- Ties in longitudinal joints
- Peripheral ties
- Reinforced topping
- Rigidity of the surrounding

Open questions

- Influence load percentage
- Fire resistance HC with non rigid supports
- Strategy to be followed by IPHA
 - ⇒ Dissemination existing knowledge
 - ⇒ Harmonisation national test procedures
 - ⇒ New specific test prescription in EN 1168 (longitudinal bars or concrete frame)
 - \Rightarrow etc.

Practical instructions for tests

- ✤ Never perform tests on single slabs without connections
- ✤ The test unit should be composed of more than one slab
- ✤ The slabs should be connected to supporting beams

4

- ✤ Provide tie-bars in the longitudinal joints or in open casted cores
- ✓ Keep the moisture content of the unit below 2.5% by drying
- Simulate the restraining effect of the surrounding structure, e.g.by longitudinal bars along the edges of the test unit
- The topping should contain only longitudinal bars, since transverse bars will cause horizontal splitting of the slab.

The test load should not be larger than 50% of the variable load at room temperature.

Hollow core floors: safe in fire

Thank you for your kind attention