Critical issues in design of connections

Björn Engström IPHA Technical Seminar November 6-7 2007

IPHA Technical Seminar 2007

fib – Guide to good practice Precast hollow core floors

- Connections at supports
 - Support
 - Restraint at supports
 - Longitudinal tie bars
 - Tie arrangements at supports tie beams
 - Strengthening of hollow core units near supports
 - Cantilevering floors
- Connections at longitudinal joints
 - Longitudinal intermediate joints
 - Connections at side joints
 - Grouting of longitudinal joints

Simplified design procedure

- Capacity of single elements
- Design for one sectional force at the time no interaction
- Complex interaction between various phenomena
- Interaction between elements within the floor and within connections

Björn Engström

Wall/HC floor connection

- The wall load will probably also go through the HC unit and its core filling also in case of soft bearings
- Part of the wall load will spread transversally into the HC unit (compatibility) – splitting effects
- Combined effect of wall load and restraint moment
- Important to avoid cracks in unfavourable locations

Unintended restraint – HC-floor

- Clamping
- Friction
- Bond to joint (before cracking of joint face)
- Tie bar (after cracking of joint face)

Bond strength \approx tensile strength

IPHA Technical Seminar 2007

Need for movements?

Shortening Positive rotation Negative rotation

IPHA Technical Seminar 2007

IPHA Technical Seminar 2007

Björn Engström

Unfavourable crack position

Low shear capacity No support for dowel action

Preferred crack location

Support for dowel action in both directions

Reduced shear capacity of cracked section

IPHA Technical Seminar 2007

Prevent/reduce restraint moment

FIP Recommendations 1988:

- avoid crack inducements in critical zone, core filling
- vertical load distribution between floor elements
- limit the restraint, see Figs.
- when needed strengthen the floor by tie bars
- proper anchorage of tie bars

Björn Engström

Idea of notched ends

Weak section - avoid cracks in unfavourable positions In practice the crack will not be that perfect Crack propagates inside the support, which is good

IPHA Technical Seminar 2007

Strengthening of HC-floor

Tie bars in cores or grouted joints, full anchorage in critical zone Limit the tie force, keep any cracks together

IPHA Technical Seminar 2007

Division of Structural Engineering

IPHA Technical Seminar 2007

Neoprene bearing

- Transverse tension provokes cracks along strands and anchorage failure
- The tie beam along the element end and concrete fill in the cores are important to prevent those cracks

Björn Engström

Diaphragm action of HC floor

IPHA Technical Seminar 2007

Different support conditions

The beam analogy is not fully applicable

IPHA Technical Seminar 2007

Load transferred the shortest way

IPHA Technical Seminar 2007

In HC floors transverse steel is placed in transverse joint only

IPHA Technical Seminar 2007

Suspension is needed along the edges

IPHA Technical Seminar 2007

Division of Structural Engineering

Strut and tie models

IPHA Technical Seminar 2007

Strut and tie models

IPHA Technical Seminar 2007

Distributed shear transfer by friction

IPHA Technical Seminar 2007

Shear transfer by friction

It is not the steel detail that is loaded in shear, but the steel detail make friction possible

IPHA Technical Seminar 2007

Björn Engström

Design for shear friction

Influence of joint roughness

IPHA Technical Seminar 2007

Self-generated friction

IPHA Technical Seminar 2007

External bars – small steel stress

When the maximum crack opening w_{max} is reached, the steel has not yet started to yield

$$\sigma_s < f_{yd}$$

IPHA Technical Seminar 2007

Influence of bond and anchorage

IPHA Technical Seminar 2007

Influence of bond and anchorage

IPHA Technical Seminar 2007

Pull-out resistance

IPHA Technical Seminar 2007

Björn Engström

Conclusion

- Aim at distributed shear transfer by friction
- Detail the connection such that the transverse steel is forced to yield for a small shear slip along the joint

Design for robustness

Björn Engström

What is meant by ductility?

Ductility = the ability of a structural member, a structural connection or a structural material to undergo large plastic deformations without significant loss of force capacity

Load

Don't mix up deformation capacity and ductility. Ductility refers to the shape of the loaddisplacement diagram, not the absolute value of deformation

IPHA Technical Seminar 2007

Displacement

IPHA Technical Seminar 2007

Analysis of various damages and possible alternative force paths

New local equilibrium of a cantilever system with large displacements. Spread of collapse is prevented.

IPHA Technical Seminar 2007

Alternative ways to bridge the local damage

IPHA Technical Seminar 2007

Dynamic problem – no equilibrium in the start

IPHA Technical Seminar 2007

If the loss of potential energy can be absorbed as strain energy, static equilibrium can be achieved (deflected state)

IPHA Technical Seminar 2007

Ductile tie connections are favourable

Displacement

IPHA Technical Seminar 2007

Strain energy at failure

Displacement

IPHA Technical Seminar 2007

Strain energy at the same displacement

Displacement

IPHA Technical Seminar 2007

Strain energy at failure

Displacement

IPHA Technical Seminar 2007

Björn Engström

Yield penetration favourable with regard to ductility

Different types of tie bars

yielding of steel and yield penetration

Ductility depends on plastic anchor slip

IPHA Technical Seminar 2007

Balanced design for ductility

IPHA Technical Seminar 2007

Björn Engström

Anchorage for ductility

Avoid anchorage failures

Provide anchorage for rupture of the steel

Anchorage in grouted joints

Bar in correct position Full anchorage in the joint (anchorage length, fully encased) Transverse reinforcement

Execution Workmanship

Björn Engström

Connection for industrialised construction?

IPHA Technical Seminar 2007

The connection zone – discontinuity region

IPHA Technical Seminar 2007

Analysis of the complex connection zone

Transfer of prestressing Need for movement Restraint at the support Anchorage of strands Vertical load in wall connections Anchorage of tie bars Shear and torsion Flexible support

IPHA Technical Seminar 2007